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Preface

Number theory and algebra play an increasingly significant role in computing and
communications, as evidenced by the striking applications of these subjects to such
fields as cryptography and coding theory. My goal in writing this book was to
provide an introduction to number theory and algebra, with an emphasis on algo-
rithms and applications, that would be accessible to a broad audience. In particular,
I wanted to write a book that would be accessible to typical students in computer
science or mathematics who have a some amount of general mathematical experi-
ence, but without presuming too much specific mathematical knowledge.

Prerequisites. The mathematical prerequisites are minimal: no particular math-
ematical concepts beyond what is taught in a typical undergraduate calculus se-
quence are assumed.

The computer science prerequisites are also quite minimal: it is assumed that the
reader is proficient in programming, and has had some exposure to the analysis of
algorithms, essentially at the level of an undergraduate course on algorithms and
data structures.

Even though it is mathematically quite self contained, the text does presuppose
that the reader is comfortable with mathematical formalism and has some experi-
ence in reading and writing mathematical proofs. Readers may have gained such
experience in computer science courses such as algorithms, automata or complex-
ity theory, or some type of “discrete mathematics for computer science students”
course. They also may have gained such experience in undergraduate mathematics
courses, such as abstract or linear algebra—these courses overlap with some of the
material presented here, but even if the reader already has had some exposure to
this material, it nevertheless may be convenient to have all of the relevant material
easily accessible in one place, and moreover, the emphasis and perspective here
will no doubt be different than in a typical mathematics course on these subjects.

Structure of the text. All of the mathematics required beyond basic calculus is de-
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veloped “from scratch.” Moreover, the book generally alternates between “theory”
and “applications”: one or two chapters on a particular set of purely mathematical
concepts are followed by one or two chapters on algorithms and applications —
the mathematics provides the theoretical underpinnings for the applications, while
the applications both motivate and illustrate the mathematics. Of course, this di-
chotomy between theory and applications is not perfectly maintained: the chapters
that focus mainly on applications include the development of some of the mathe-
matics that is specific to a particular application, and very occasionally, some of
the chapters that focus mainly on mathematics include a discussion of related al-
gorithmic ideas as well.

In developing the mathematics needed to discuss certain applications, I tried
to strike a reasonable balance between, on the one hand, presenting the absolute
minimum required to understand and rigorously analyze the applications, and on
the other hand, presenting a full-blown development of the relevant mathematics.
In striking this balance, I wanted to be fairly economical and concise, while at the
same time, I wanted to develop enough of the theory so as to present a fairly well-
rounded account, giving the reader more of a feeling for the mathematical “big
picture.”

The mathematical material covered includes the basics of number theory (includ-
ing unique factorization, congruences, the distribution of primes, and quadratic
reciprocity) and abstract algebra (including groups, rings, fields, and vector
spaces). It also includes an introduction to discrete probability theory —this ma-
terial is needed to properly treat the topics of probabilistic algorithms and cryp-
tographic applications. The treatment of all these topics is more or less standard,
except that the text only deals with commutative structures (i.e., abelian groups and
commutative rings with unity)—this is all that is really needed for the purposes of
this text, and the theory of these structures is much simpler and more transparent
than that of more general, non-commutative structures.

The choice of topics covered in this book was motivated primarily by their appli-
cability to computing and communications, especially to the specific areas of cryp-
tography and coding theory. For example, the book may be useful for reference
or self-study by readers who want to learn about cryptography. The book could
also be used as a textbook in a graduate or upper-division undergraduate course
on (computational) number theory and algebra, perhaps geared towards computer
science students.

Since this is an introductory textbook, and not an encyclopedic reference for
specialists, some topics simply could not be covered. One such topic whose ex-
clusion will undoubtedly be lamented by some is the theory of lattices, along with
algorithms for and applications of lattice basis reduction. Another such topic is
that of fast algorithms for integer and polynomial arithmetic — although some of
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the basic ideas of this topic are developed in the exercises, the main body of the
text deals only with classical, quadratic-time algorithms for integer and polynomial
arithmetic. As an introductory text, some topics just had to go; moreover, there are
more advanced texts that cover these topics perfectly well, and these texts should
be readily accessible to students who have mastered the material in this book.

Note that while continued fractions are not discussed, the closely related prob-
lem of “rational reconstruction” is covered, along with a number of interesting
applications (which could also be solved using continued fractions).

Using the text. Here are a few guidelines on using the text.

e There are a few sections that are marked with a “(x),” indicating that the
material covered in that section is a bit technical, and is not needed else-
where.

e There are many examples in the text. These form an integral part of the
text, and should not be skipped.

e There are a number of exercises in the text that serve to reinforce, as well
as to develop important applications and generalizations of, the material
presented in the text.

e Some exercises are underlined. These specially marked exercises develop
important (but usually simple) facts, and should be viewed as an integral
part of the text. It is highly recommended that the reader work these exer-
cises, or at the very least, read and understand their statements.

o In solving exercises, the reader is free to use any previously stated results
in the text, including those in previous exercises. However, except where
otherwise noted, any result in a section marked with a “(x),” or in §5.5,
need not and should not be used outside the section in which it appears.

e There is a very brief “Preliminaries” chapter, which fixes a bit of notation
and recalls a few standard facts. This should be skimmed over by the reader.

e There is an appendix that contains a few useful facts; where such a fact is
used in the text, there is a reference such as “see §An,” which refers to the
item labeled “An” in the appendix.

Feedback. I welcome comments on the book (suggestions for improvement, error
reports, etc.) from readers. Please send your comments to

victor@shoup.net.

There is also a web site where further material and information relating to the book
(including a list of errata and the latest electronic version of the book) may be
found:

www . shoup.net/ntb.


mailto:victor@shoup.net
http://www.shoup.net/ntb
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Preliminaries

We establish here some terminology, notation, and simple facts that will be used
throughout the text.

Logarithms and exponentials

We write log x for the natural logarithm of x, and log;, x for the logarithm of x to
the base b.

We write e* for the usual exponential function, where e =~ 2.71828 is the base
of the natural logarithm. We may also write exp[x] instead of e*.

Numbers

We use standard notation for various sets of numbers:

Z := the set of integers = {...,—2,—1,0,1,2,...},
Q := the set of rational numbers = {a/b :a,b € Z,b # 0},
R := the set of real numbers,

C := the set of complex numbers.

We sometimes use the symbols co and —oo in simple arithmetic expressions
involving real numbers. The interpretation given to such expressions should be
obvious: for example, for every x € R, we have —co < x < 00, X + 00 = 00,
X —00 = —00, 00 4+ 00 = 00, and (—o0) + (—o0) = —oo. Expressions such as
x - (00) also make sense, provided x # 0. However, the expressions oo — oo and
0 - oo have no sensible interpretation.

We use standard notation for specifying intervals of real numbers: for a,b € R

X1v
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witha < b,
[a,b] :=={x € R:a <x < b}, (a,b) :=={a e R:a <x <b},
[a,h) :={x e R:a <x < b}, (a,b] :={a eR:a <x <bh}.

As usual, this notation is extended to allow a = —oo for intervals (a, b] and (a, b),

and b = oo for intervals [a, b) and (a, b).

Sets and families

We use standard set-theoretic notation: @ denotes the empty set; x € A means that
x 1s an element, or member, of the set A; for two sets A, B, A € B means that 4
is a subset of B (with A possibly equal to B), and A & B means that A4 is a proper
subset of B (i.e., A C B but A # B). Further, A U B denotes the union of A and
B, A N B the intersection of A and B, and A \ B the set of all elements of A that
are not in B. If A is a set with a finite number of elements, then we write | A| for its
size, or cardinality. We use standard notation for specifying the elements of a set.
For example, the set of all even integers could be specified as {z € Z : z/2 € Z}
oras{2z :z € Z}.

We write S1 X - - - x S, for the Cartesian product of sets Sq, ..., Sy, thatis, the
set of all n-tuples (ay,....,a,), wherea; € S; fori = 1,...,n. We write $*" for
the Cartesian product of n copies of a set S, and for x € S, we write x*” for the
element of S*” consisting of n copies of x. (This notation is a bit non-standard,
but we reserve the more standard notation S” for other purposes, so as to avoid
ambiguity.)

A family is a collection of objects, indexed by some set /, called an index set.
If for each i € I we have an associated object x;, the family of all such objects
is denoted by {x;};cs. Unlike a set, a family may contain duplicates; that is, we
may have x; = x; for some pair of indices 7, j with i # j. If the index set /
has some natural order, then we may view the family as being ordered in the same
way. As a special case, a family indexed by a subset of Z of the form {m,...,n} or
{m,m + 1,...} is a sequence, which we may write as {x;}7_, or {x;}2 . Note
that while {x;};c; denotes a family, {x; : x; € I} denotes the ser whose members
are the (distinct) x;’s. On occasion, if the choice of index set is not important, we
may simply define a family by listing or describing its members, without explicitly
describing an index set; for example, “the family of objects a, b, ¢,” means the
family {x;}?_,, where x; := a, x, := b, and x3 := c.

Unions and intersections may be generalized to arbitrary families of sets. For a
family {S;};es of sets, the union is

USi ={x:x € S§; forsomei € I},

iel
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and for I # @, the intersection is

mSi ={x:x e S;foralli € I}.

iel
Note that if / = @, the union is by definition @, but the intersection is, in gen-
eral, not well defined; however, in certain application, one might define it by a
special convention; for example, if all sets under consideration are subsets of some
“ambient space,” §2, then the empty intersection is usually taken to be £2.

Two sets A and B are called disjoint if A N B = @. A family {S;};es of sets is
called pairwise disjoint if S; N S; = @ foralli,j € I withi # j. A pairwise
disjoint family of non-empty sets whose union is S is called a partition of S;
equivalently, {S; };cs is a partition of a set S if each S; is a non-empty subset of S,
and each element of S belongs to exactly one ;.

Functions

We write f : A — B to indicate that f is a function (also called a map) from
aset Atoaset B. If A/ C A, then f(A') := {f(a) : a € A’} is the image of
A’ under f, and f(A) is simply referred to as the image of f; if B’ C B, then
f~Y(B'):={a € A: f(a) € B’} is the pre-image of B’ under f.

A function f : A — B is called one-to-one or injective if f(a) = f(b) implies
a = b. The function f is called onto or surjective if f(A4) = B. The function
f is called bijective if it is both injective and surjective; in this case, f is called a
bijection, or a one-to-one correspondence. If f is bijective, then we may define
the inverse function f~! : B — A, where for b € B, f~1(b) is defined to be
the unique a € A such that f(a) = b; in this case, f~! is also a bijection, and
fHt=r.

If A’ C A, then the inclusion map from A’ to A is the functioni : A — A
given by i(a) := a fora € A’; when A’ = A, this is called the identity map on
ATfTA CA f:A —-B,f:A— B,and f'(a) = f(a) foralla € A, then
we say that f” is the restriction of f to A, and that f is an extension of f’ to A.

If f:A— Bandg: B — C are functions, their composition is the function
gof:A— Cgivenby (go f)a) := g(f(a)) fora e A. If f : A — B is
a bijection, then f~! o f is the identity map on A4, and f o f~! is the identity
map on B. Conversely, if f : A — B and g : B — A are functions such that
g o f is the identity map on A and f o g is the identity map on B, then f and g
are bijections, each being the inverse of the other. If f : A — Bandg: B — C
are bijections, thensois go f,and (go )™ ' = f~1og !

Function composition is associative; that is, for all functions f : A — B,
g:B—>C,andh : C - D,wehave (hog)o f = ho(go f). Thus, we
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can simply write h o g o f without any ambiguity. More generally, if we have
functions f; : A; — A;j41 fori = 1,...,n, where n > 2, then we may write their
composition as fy o --- o f1 without any ambiguity. If each f; is a bijection, then
S0 is fp o+ o fi, its inverse being f; ! o---o f,m1. As a special case of this, if
Ai = Aand f; = f fori = 1,...,n, then we may write f, o---o f1 as f". Itis
understood that f1 = £, and that £ is the identity map on A. If f is a bijection,
then so is f” for every non-negative integer n, the inverse function of f” being
(f~1", which one may simply write as f ~".

If f:1 — S is a function, then we may view f as the family {x;};cy, where
x; := f(i). Conversely, a family {x;};c7, where all of the x;’s belong to some
set S, may be viewed as the function f : I — S given by f(i) := x; fori € I.
Really, functions and families are the same thing, the difference being just one of
notation and emphasis.

Binary operations

A binary operation x on a set S is a function from § x § to S, where the value
of the function at (a,b) € S x S is denoted a % b.

A binary operation = on S is called associative if for all a,b,c € S, we have
(a xb) x ¢ = a x (b xc). In this case, we can simply write a * b » ¢ without
any ambiguity. More generally, for a1,...,a, € S, where n > 2, we can write
ap * -+ x ay without any ambiguity.

A binary operation x on § is called commutative if for all a,b € S, we have
a »b = b x a. If the binary operation % is both associative and commutative,
then not only is the expression a; * - -+ * a, unambiguous, but its value remains
unchanged even if we re-order the a;’s.

If % is a binary operation on S, and S C S, then S’ is called closed under * if
axbe S foralla,b e S’
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Basic properties of the integers

This chapter discusses some of the basic properties of the integers, including the
notions of divisibility and primality, unique factorization into primes, greatest com-
mon divisors, and least common multiples.

1.1 Divisibility and primality
A central concept in number theory is divisibility.
Consider the integers Z = {...,—-2,—1,0,1,2,...}. Fora,b € Z, we say that
a divides b if az = b for some z € Z. If a divides b, we write a | b, and we may
say that a is a divisor of b, or that b is a multiple of a, or that b is divisible by a.
If a does not divide b, then we write a | b.
We first state some simple facts about divisibility:

Theorem 1.1. Foralla,b,c € Z, we have
(i) ala, 1|b,anda |0;

(ii) 0| b ifand only if b = 0;

(iii) a | b if and only if —a | b if and only if a | —b;

(iv) a | banda | c impliesa | (b + ¢);

(v) a|bandb | cimpliesa | c.
Proof. These properties can be easily derived from the definition of divisibility,
using elementary algebraic properties of the integers. For example, a | a because
we can write @ - | = a; 1 | b because we can write 1 - b = b; a | 0 because we

can write @ - 0 = 0. We leave it as an easy exercise for the reader to verify the
remaining properties. [J

We make a simple observation: if a | b and b # 0, then 1 < |a| < |b|. Indeed,
if az = b # 0 for some integer z, then a # 0 and z # 0; it follows that |a| > 1,
|z| > 1, and so |a| < |a||z| = |b].
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Theorem 1.2. Foralla,b € Z, we have a | b and b | a if and only ifa = £b. In
particular, for everya € Z, we have a | 1 if and only ifa = £1.

Proof. Clearly, if a = +b, thena | b and b | a. So let us assume that @ | b and
b | a, and prove that a = +b. If either of a or b are zero, then the other must
be zero as well. So assume that neither is zero. By the above observation, a | b
implies |a| < |b|, and b | a implies |b| < |a|; thus, |a| = |b|, and so a = +b. That
proves the first statement. The second statement follows from the first by setting
b :=1, and noting that 1 | a. O

The product of any two non-zero integers is again non-zero. This implies the
usual cancellation law: if a, b, and ¢ are integers such that ¢ # 0 and ab = ac,
then we must have b = c; indeed, ab = ac implies a(b —c) = 0, and soa # 0
implies b — ¢ = 0, and hence b = c.

Primes and composites. Let n be a positive integer. Trivially, 1 and » divide n.
If n > 1 and no other positive integers besides 1 and n divide n, then we say n is
prime. If n > 1 but n is not prime, then we say that n is composite. The number 1
is not considered to be either prime or composite. Evidently, n is composite if and
only if n = ab for some integers a,b with 1 <a <nand 1 < b < n. The first
few primes are

2,3,5,7,11,13,17,....

While it is possible to extend the definition of prime and composite to negative
integers, we shall not do so in this text: whenever we speak of a prime or composite
number, we mean a positive integer.

A basic fact is that every non-zero integer can be expressed as a signed product
of primes in an essentially unique way. More precisely:

Theorem 1.3 (Fundamental theorem of arithmetic). Every non-zero integer n
can be expressed as

n zipil...pf”’

where p1, ..., pr are distinct primes and eq, . .., e, are positive integers. More-
over, this expression is unique, up to a reordering of the primes.

Note that if » = %1 in the above theorem, then » = 0, and the product of zero
terms is interpreted (as usual) as 1.

The theorem intuitively says that the primes act as the “building blocks” out
of which all non-zero integers can be formed by multiplication (and negation).
The reader may be so familiar with this fact that he may feel it is somehow “self
evident,” requiring no proof; however, this feeling is simply a delusion, and most



1.1 Divisibility and primality 3

of the rest of this section and the next are devoted to developing a proof of this
theorem. We shall give a quite leisurely proof, introducing a number of other very
important tools and concepts along the way that will be useful later.

To prove Theorem 1.3, we may clearly assume that n is positive, since otherwise,
we may multiply n by —1 and reduce to the case where # is positive.

The proof of the existence part of Theorem 1.3 is easy. This amounts to showing
that every positive integer n can be expressed as a product (possibly empty) of
primes. We may prove this by induction on n. If n = 1, the statement is true, as
n is the product of zero primes. Now let n > 1, and assume that every positive
integer smaller than n can be expressed as a product of primes. If # is a prime, then
the statement is true, as n is the product of one prime; otherwise, n is composite,
and so there exist a,b € Z with 1 < a <n,1 < b < n,and n = ab; by the
induction hypothesis, both a and b can be expressed as a product of primes, and so
the same holds for .

The uniqueness part of Theorem 1.3 is the hard part. An essential ingredient in
this proof is the following:

Theorem 1.4 (Division with remainder property). Let a,b € Z with b > 0.
Then there exist unique q,r € Z suchthata = bq +r and 0 <r < b,

Proof. Consider the set S of non-negative integers of the form a — bt with ¢t € Z.
This set is clearly non-empty; indeed, ifa > 0, setf := 0, and ifa < 0, sett := a.
Since every non-empty set of non-negative integers contains a minimum, we define
r to be the smallest element of S. By definition, r is of the form r = a — bq for
some g € Z, and r > 0. Also, we must have r < b, since otherwise, r — b would
be an element of S' smaller than r, contradicting the minimality of r; indeed, if
r > b, then we wouldhave 0 <r —b =a —b(q + 1).

That proves the existence of r and ¢. For uniqueness, suppose that a = bg + r
anda = bq’ + r’, where 0 < r < b and 0 < r’ < b. Then subtracting these two
equations and rearranging terms, we obtain

r'—r =b(q—q).

Thus, ' — r is a multiple of b; however, 0 < r < b and 0 < r’ < b implies
[r’ —r| < b; therefore, the only possibility is ¥’ —r = 0. Moreover, 0 = b(q —q’)
and b # 0 implies g — ¢’ = 0. O

Theorem 1.4 can be visualized as follows:
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Starting with a, we subtract (or add, if a is negative) the value b until we end up
with a number in the interval [0, b).

Floors and ceilings. Let us briefly recall the usual floor and ceiling functions,
denoted |-| and [-], respectively. These are functions from R (the real numbers) to
Z. For x € R, | x] is the greatest integer m < x; equivalently, | x| is the unique
integer m such that m < x < m + 1, or put another way, such that x = m + €
for some € € [0,1). Also, [x] is the smallest integer m > x; equivalently, [x]
is the unique integer m such that m — 1 < x < m, or put another way, such that
x =m — € for some € € [0, 1).

The mod operator. Now let a,b € Z with b > 0. If ¢ and r are the unique
integers from Theorem 1.4 that satisfy a = bg + r and 0 < r < b, we define

amodb :=r;

that is, @ mod b denotes the remainder in dividing a by b. It is clear that b | a if
and only if ¢ mod b = 0. Dividing both sides of the equation a = bg + r by b,
we obtaina/b = g +r/b. Sinceq € Z and r/b € [0, 1), we see that ¢ = |a/b].
Thus,

(amod b) =a—>bla/b].

One can use this equation to extend the definition of @ mod b to all integers a and
b, with b # 0; that is, for b < 0, we simply define @ mod b tobe a — b|a/b].

Theorem 1.4 may be generalized so that when dividing an integer a by a positive
integer b, the remainder is placed in an interval other than [0, b). Let x be any real
number, and consider the interval [x, x + b). As the reader may easily verify, this
interval contains precisely b integers, namely, [x],...,[x] + b — 1. Applying
Theorem 1.4 with a — [x] in place of a, we obtain:

Theorem 1.5. Let a,b € Z with b > 0, and let x € R. Then there exist unique
q,r € Z suchthata = bgq +r andr € [x,x + b).

EXERCISE 1.1. Let a,b,d € Z with d # 0. Show that @ | b if and only if
da | db.

EXERCISE 1.2. Let n be a composite integer. Show that there exists a prime p
dividing n, with p < nl/2,

EXERCISE 1.3. Let m be a positive integer. Show that for every real number
x > 1, the number of multiples of m in the interval 1, x] is | x/m; in particular,
for every integer n > 1, the number of multiples of m among 1,...,nis |n/m].
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EXERCISE 1.4. Let x € R. Show that 2| x| < |2x] < 2|x] + 1.

EXERCISE 1.5. Let x € Rand n € Z withn > 0. Show that | |x]|/n] = [x/n];
in particular, | |a/b]/c| = |a/bc] for all positive integers a, b, c.

EXERCISE 1.6. Leta,b € Z with b < 0. Show that (¢ mod b) € (b, 0].

EXERCISE 1.7. Show that Theorem 1.5 also holds for intervals of the form (x, x +
b]. Does it hold in general for the intervals [x, x + b] or (x,x + b)?

1.2 Ideals and greatest common divisors

To carry on with the proof of Theorem 1.3, we introduce the notion of an ideal of
Z, which is a non-empty set of integers that is closed under addition, and under
multiplication by an arbitrary integer. That is, a non-empty set / € Z is an ideal if
and only if foralla,b € I and all z € Z, we have

a+bel and az € 1.

It is easy to see that every ideal I contains 0: since @ € I for some integer a,
we have 0 = a - 0 € I. Also, note that if an ideal I contains an integer a, it also
contains —a, since —a = a - (—1) € I. Thus, if an ideal contains a and b, it also
contains a — b. Tt is clear that {0} and Z are ideals. Moreover, an ideal [ is equal
to Z if and only if 1 € I; to see this, note that 1 € I implies that for every z € Z,
we have z = 1-z € I, and hence I = Z; conversely, if I = Z, then in particular,
lel.

Fora € Z, define aZ := {az : z € Z}; that is, aZ is the set of all multiples of
a. If a = 0, then clearly aZ = {0}; otherwise, aZ consists of the distinct integers

...,—3a,—2a,—a,0,a,2a,3a,....

It is easy to see that aZ is an ideal: for all az,az’ € aZ and z” € Z, we have
az+az' =a(z +z') € aZ and (az)z” = a(zz") € aZ. The ideal aZ is called
the ideal generated by «, and an ideal of the form aZ for some a € Z is called a
principal ideal.

Observe that for all a,b € Z, we have b € aZ if and only if a | b. Also
observe that for every ideal I, we have b € [ if and only if bZ C I. Both of these
observations are simple consequences of the definitions, as the reader may verify.
Combining these two observations, we see that bZ C aZ if and only ifa | b.

If 11 and I, are ideals, then it is not hard to see that the set /1 + I» := {a; + a5 :
ay € I1,as € I} is also an ideal. Indeed, suppose a;+as € I1+ 1 and by +b; €
11 + I». Then we have (a1 +a3) + (b1 +b2) = (a1 +b1) + (ax + by) € 11 + 15,
and for every z € Z, we have (ay + a2)z = a1z + azz € I1 + I».
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Example 1.1. Consider the principal ideal 3Z. This consists of all multiples of 3;
thatis, 3Z ={...,—9,—-6,-3,0,3,6,9,...}. O

Example 1.2. Consider the ideal 3Z 4 5Z. This ideal contains 3-2+5-(—1) = 1.
Since it contains 1, it contains all integers; thatis, 3Z + 57 = Z. O

Example 1.3. Consider the ideal 4Z + 6Z. This ideal contains 4-(—1)+6-1 = 2,
and therefore, it contains all even integers. It does not contain any odd integers,
since the sum of two even integers is again even. Thus, 4Z + 6Z = 27. O

In the previous two examples, we defined an ideal that turned out upon closer
inspection to be a principal ideal. This was no accident: the following theorem
says that all ideals of Z are principal.

Theorem 1.6. Let [ be an ideal of Z. Then there exists a unique non-negative
integer d such that I = dZ.

Proof. We first prove the existence part of the theorem. If / = {0}, thend = 0
does the job, so let us assume that / # {0}. Since / contains non-zero integers, it
must contain positive integers, since if a € [ then so is —a. Let d be the smallest
positive integer in /. We want to show that / = dZ.

We first show that I C dZ. To this end, let a be any element in /. It suffices to
show that d | a. Using the division with remainder property, write a = dgq + r,
where 0 < r < d. Then by the closure properties of ideals, one sees that r =
a — dgq is also an element of I, and by the minimality of the choice of d, we must
have r = 0. Thus, d | a.

We have shown that I € dZ. The fact that d Z C [ follows from the fact that
d el.Thus, I =dZ.

That proves the existence part of the theorem. As for uniqueness, note that if
dZ = eZ for some non-negative integer e, then d | e and e | d, from which it
follows by Theorem 1.2 that d = =e; since d and e are non-negative, we must
have d = e. O

Greatest common divisors. For a,b € Z, we call d € Z a common divisor of a
and b if d | a and d | b; moreover, we call such a d a greatest common divisor
of a and b if d is non-negative and all other common divisors of a and b divide d.

Theorem 1.7. For all a,b € Z, there exists a unique greatest common divisor d
of a and b, and moreover, aZ + bZ = dZ.

Proof. We apply the previous theorem to the ideal / := aZ +bZ. Letd € Z with
I = d7Z, as in that theorem. We wish to show that d is a greatest common divisor
of a and b. Note that a, b,d € I and d is non-negative.
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Sincea € I = dZ, we see that d | a; similarly, d | b. So we see that d is a
common divisor of @ and b.

Since d € I = aZ + bZ, there exist s,t € Z such that as + bt = d. Now
suppose a = a’d’ and b = b’'d’ for some a’,b’,d’ € Z. Then the equation
as + bt = d implies that d'(a’s + b’t) = d, which says that d’ | d. Thus, any
common divisor d’ of a and b divides d.

That proves that d is a greatest common divisor of @ and b. As for uniqueness,
note that if e is a greatest common divisor of @ and b, then d | e and e | d, and
hence d = =+e; since both d and e are non-negative by definition, we have d = e.
d

For a,b € Z, we write gcd(a, b) for the greatest common divisor of a and b.
We say that a, b € Z are relatively prime if gcd(a, b) = 1, which is the same as
saying that the only common divisors of ¢ and b are +1.

The following is essentially just a restatement of Theorem 1.7, but we state it
here for emphasis:

Theorem 1.8. Let a,b,r € Z and let d := gcd(a, b). Then there exist s,t € Z
such that as + bt = r if and only if d | r. In particular, a and b are relatively
prime if and only if there exist integers s and t such that as + bt = 1.

Proof. We have

as + bt =r forsomes,t € Z
< reaZ+bZ
<= r € dZ (by Theorem 1.7)
& d|r.
That proves the first statement. The second statement follows from the first, setting
r:=1.0

Note that as we have defined it, gcd(0,0) = 0. Also note that when at least
one of a or b are non-zero, gcd(a, b) may be characterized as the largest positive
integer that divides both a and b, and as the smallest positive integer that can be
expressed as as + bt for integers s and ¢.

Theorem 1.9. Leta,b,c € Z such that ¢ | ab and gcd(a,c) = 1. Then c | b.

Proof. Suppose that ¢ | ab and ged(a,c¢) = 1. Then since ged(a,c) = 1, by
Theorem 1.8 we have as + ct = 1 for some s,¢ € Z. Multiplying this equation by
b, we obtain

abs 4+ cbt = b. (1.1)
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Since ¢ divides ab by hypothesis, and since ¢ clearly divides cbt, it follows that ¢
divides the left-hand side of (1.1), and hence that ¢ divides b. [J

Suppose that p is a prime and a is any integer. As the only divisors of p are £1
and £ p, we have

p|la = gcd(a, p) = p, and
pta = ged(a, p) =1.

Combining this observation with the previous theorem, we have:

Theorem 1.10. Let p be prime, and let a,b € Z. Then p | ab implies that p | a
orp|b.

Proof. Assume that p | ab. If p | a, we are done, so assume that p { a. By the
above observation, gcd(a, p) = 1, and so by Theorem 1.9, we have p | b. O

An obvious corollary to Theorem 1.10 is that if ay, ..., a; are integers, and if
p is a prime that divides the product a; ---ay, then p | a; for somei = 1,...,k.
This is easily proved by induction on k. For k = 1, the statement is trivially true.
Now let k£ > 1, and assume that statement holds for k — 1. Then by Theorem 1.10,
either p | aj or p | az---ay; if p | a1, we are done; otherwise, by induction, p
divides one of a», ..., a.

Finishing the proof of Theorem 1.3. We are now in a position to prove the unique-

ness part of Theorem 1.3, which we can state as follows: if pq,..., p, are primes
(not necessarily distinct), and ¢1, ..., g5 are primes (also not necessarily distinct),
such that

P1Pr=4q1-4s, (1.2)

then (p1,..., pr) is just a reordering of (¢q1, ..., qs). We may prove this by induc-
tion on r. If r = 0, we must have s = 0 and we are done. Now suppose r > 0,
and that the statement holds for » — 1. Since » > 0, we clearly must have s > 0.
Also, as pp obviously divides the left-hand side of (1.2), it must also divide the
right-hand side of (1.2); that is, p; | ¢1---¢s. It follows from (the corollary to)
Theorem 1.10 that p; | g; for some j = 1,...,s, and moreover, since g; is prime,
we must have p; = ¢;. Thus, we may cancel p; from the left-hand side of (1.2)
and ¢; from the right-hand side of (1.2), and the statement now follows from the
induction hypothesis. That proves the uniqueness part of Theorem 1.3.

EXERCISE 1.8. Let I be a non-empty set of integers that is closed under addition,
thatis,a + b € [ for all a,b € I. Show that [ is an ideal if and only if —a € [
foralla € I.
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EXERCISE 1.9. Show that for all integers a, b, ¢, we have
(a) ged(a,b) = ged(b, a),
(b) ged(a,b) =la| < a b,
(c) ged(a,0) = ged(a,a) = |a| and ged(a, 1) =1,
(d) ged(ca,ch) = |c|ged(a, b).

EXERCISE 1.10. Show that for all integers a, b with d := gcd(a, b) # 0, we have
ged(a/d,b/d) = 1.

EXERCISE 1.11. Let n be an integer. Show that if a, b are relatively prime inte-
gers, each of which divides n, then ab divides n.

EXERCISE 1.12. Show that two integers are relatively prime if and only if there is
no one prime that divides both of them.

EXERCISE 1.13. Leta, by, ..., by be integers. Show that gcd(a, by ---b) = 1if
and only if gcd(a, b;) = 1 fori =1,...,k.

EXERCISE 1.14. Let p be a prime and k an integer, with 0 < k < p. Show that

the binomial coefficient
py__ p!
k k\(p—k)!

which is an integer (see §A2), is divisible by p.
EXERCISE 1.15. An integer a is called square-free if it is not divisible by the
square of any integer greater than 1. Show that
(a) a is square-free if and only if a = £ p; --- p,, where the p;’s are distinct
primes;
(b) every positive integer n can be expressed uniquely as n = ab?, where a
and b are positive integers, and a is square-free.

EXERCISE 1.16. For each positive integer m, let I, denote {0,...,m — 1}. Let
a, b be positive integers, and consider the map

T IpxlIlg— Igp
(s,t) — (as + bt) mod ab.
Show 7 is a bijection if and only if gcd(a, b) = 1.

EXERCISE 1.17. Let a, b, ¢ be positive integers, with gcd(a,b) = 1 and ¢ >
(a—1)(b—1). Show that there exist non-negative integers s, t such that c = as-+bt.



10 Basic properties of the integers

EXERCISE 1.18. For each positive integer n, let D, denote the set of positive
divisors of n. Let n1, n, be relatively prime, positive integers. Show that the sets
Dy, x Dy, and Dy, are in one-to-one correspondence, via the map that sends
(dl,dz) € Dn1 X Dnz to d1ds>.

1.3 Some consequences of unique factorization

The following theorem is a consequence of just the existence part of Theorem 1.3:
Theorem 1.11. There are infinitely many primes.

Proof. By way of contradiction, suppose that there were only finitely many primes;
call them pq,..., pr. Then set M := ]_[f;l pi and N := M 4 1. Consider a
prime p that divides N. There must be at least one such prime p, since N > 2,
and every positive integer can be written as a product of primes. Clearly, p cannot
equal any of the p;’s, since if it did, then p would divide M, and hence also divide
N —M =1, which is impossible. Therefore, the prime p is not among py, ..., Pk,
which contradicts our assumption that these are the only primes. [

For each prime p, we may define the function v,, mapping non-zero integers
to non-negative integers, as follows: for every integer n # 0, if n = p®m, where
p 1 m, then v, (n) := e. We may then write the factorization of n into primes as

n= :I:l—[pv"("),
p

where the product is over all primes p; although syntactically this is an infinite
product, all but finitely many of its terms are equal to 1, and so this expression
makes sense.

Observe that if @ and b are non-zero integers, then

vp(a -b) = vp(a) + vp(b) for all primes p, (1.3)

and
a|b < vp(a) < vp(b) forall primes p. (1.4)
From this, it is clear that
ged(a, b) = l_[pmin(vp(a),vp(b))_
b4

Least common multiples. For a¢,b € Z, a common multiple of ¢ and b is an
integer m such that @ | m and b | m; moreover, such an m is the least common
multiple of a and b if m is non-negative and m divides all common multiples of
a and b. It is easy to see that the least common multiple exists and is unique,
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and we denote the least common multiple of a and b by lem(a, b). Indeed, for all
a,b € Z, if either a or b are zero, the only common multiple of @ and b is 0, and
so lem(a, b) = 0; otherwise, if neither a nor b are zero, we have

lcm(a,b) = l_[ pmax(vp(a),vp(b)),
p

or equivalently, lem(a, b) may be characterized as the smallest positive integer
divisible by both @ and b.

It is convenient to extend the domain of definition of v, to include 0, defining
Vp(0) := oo. If we interpret expressions involving “o0o” appropriately (see Prelim-
inaries), then for arbitrary a, b € Z, both (1.3) and (1.4) hold, and in addition,

vp(ged(a, b)) = min(vy(a), vp(b)) and vy(lem(a, b)) = max(vy(a), vy (b))
for all primes p.

Generalizing gcd’s and lem’s to many integers. It is easy to generalize the no-
tions of greatest common divisor and least common multiple from two integers to
many integers. Let ay,...,a; be integers. We call d € Z a common divisor of
ai,...,ag ifd | a; fori = 1,...,k; moreover, we call such a d the greatest
common divisor of ay, ..., ay if d is non-negative and all other common divisors
of ay,...,ay divide d. The greatest common divisor of ay,...,a is denoted
gcd(ayq, ..., a) and is the unique non-negative integer d satisfying

Vp(d) = min(vy(ay),...,vp(ag)) forall primes p.

Analogously, we call m € Z a common multiple of ay,...,ar ifa; | m fori =
1,...,k; moreover, such an m is called the least common multiple of aq,...,ax
if m divides all common multiples of ay,...,ag. The least common multiple of
ai,...,ay is denoted lcm(ay, ..., ay) and is the unique non-negative integer m
satisfying

vp(m) = max(vp(ay),...,vp(ag)) forall primes p.

k_is pairwise relatively prime if

Finally, we say that the family {a;};_,
ged(aj,a;) = 1forallindices i, j withi # j. Certainly, if {a,-}f?zl is pairwise rel-
atively prime, and k > 1, then ged(ay,...,ar) = 1; however, ged(ay,...,a;) =

1 does not imply that {a; }g.;l is pairwise relatively prime.

Rational numbers. Consider now the rational numbers Q = {a/b : a,b €
Z, b # 0}. Given any rational number a/b, if we set d := gecd(a, b), and de-
fine the integers ag := a/d and by := b/d, then we have a/b = ag/bo and
gcd(ag, bo) = 1. Moreover, if a; /b1 = ao/bo, then we have a1bg = agbi, and
so by | apbi, and since ged(ag, bo) = 1, we see that by | by; if by = bgc, it
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follows that a; = agc. Thus, we can represent every rational number as a frac-
tion in lowest terms, that is, a fraction of the form ag/by where ag and by are
relatively prime; moreover, the values of ag and bg are uniquely determined up to
sign, and every other fraction that represents the same rational number is of the
form agc /boc, for some non-zero integer c.

EXERCISE 1.19. Let n be an integer. Generalizing Exercise 1.11, show that if
{a; }f.‘zl is a pairwise relatively prime family of integers, where each a; divides n,
then their product 1—[5;:1 a; also divides n.

EXERCISE 1.20. Show that for all integers a, b, ¢, we have
(a) lem(a, b) = lcm(b, a),
(b) lem(a,b) = |a| < b |a,
(¢) lem(a,a) = lecm(a, 1) = |al,
(d) lem(ca, ch) = |c|lecm(a, b).

EXERCISE 1.21. Show that for all integers a, b, we have
(a) ged(a,b) -lem(a, b) = |ab|,
(b) ged(a,b) =1 = lem(a, b) = |ab].

EXERCISE 1.22. Letay,...,a; € Z with k > 1. Show that

ged(ay, ..., ar) = ged(ay, ged(as, ..., a)) = ged(ged(ay, ..., ax—1),ax),
Iem(ay,...,a;) = lecm(ay,lcm(as, ..., ar)) = lem(Iem(ay, ..., ax_1), a).
EXERCISE 1.23. Let ay,...,a;, € Z with d := gcd(ay,...,ar). Show that

dZ = a1Z + --- 4 axZ; in particular, there exist integers zy, ..., zx such that
d=a1z1+ -+ agzg.

EXERCISE 1.24. Show that if {a,-}fle is a pairwise relatively prime family of
integers, then lem(ay,...,ax) = |ai---ag|.

EXERCISE 1.25. Show that every non-zero x € QQ can be expressed as
X = j:pfl ...pfr’

where the p;’s are distinct primes and the e;’s are non-zero integers, and that this
expression in unique up to a reordering of the primes.

EXERCISE 1.26. Let n and k be positive integers, and suppose x € Q such that

xk = n for some x € Q. Show that x € Z. In other words, X/n is either an integer

or is irrational.
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EXERCISE 1.27. Show that gcd(a + b,lcm(a, b)) = ged(a, b) foralla,b € Z.

EXERCISE 1.28. Show that for every positive integer k, there exist k consecutive
composite integers. Thus, there are arbitrarily large gaps between primes.

EXERCISE 1.29. Let a,b € Z and let p be a prime. Show that v,(a + b) >
min{vy,(a), vp(b)}, and that if v,(a) < v, (b), then vy(a + b) = vy(a).

EXERCISE 1.30. For a given prime p, we may extend the domain of definition of
vp from Z to Q: for non-zero integers a, b, let us define v, (a/b) := vp(a)—v,(b).
Show that:
(a) this definition of v,(a/b) is unambiguous, in the sense that it does not
depend on the particular choice of a and b;
(b) forall x,y € Q, we have v, (xy) = vp(x) + Vp(y);
(c) forall x,y € Q, we have v, (x + y) > min{v,(x), vp(y)}, and if vp(x) <
Vp(y), then vy (x 4+ y) = vp(x);
(d) for all non-zero x € Q, we have x = + ]_[p p*?™) where the product is
over all primes, and all but a finite number of terms in the product are equal
to 1;
(e) forall x € Q, we have x € Z if and only if v, (x) > 0 for all primes p.

EXERCISE 1.31. Let n be a positive integer, and let 2K be the highest power of 2
in the set S := {1,...,n}. Show that 2% does not divide any other element in S.

EXERCISE 1.32. Letn € Z with n > 1. Show that Y 7_; 1/i is not an integer.

EXERCISE 1.33. Let n be a positive integer, and let C;, denote the number of pairs
of integers (a,b) with a,b € {1,...,n} and gcd(a,b) = 1, and let F, be the
number of distinct rational numbers a/b, where 0 < a < b < n.

(a) Show that F, = (C,, + 1)/2.

(b) Show that C, > n?/4. Hint: first show that C, > n*(1 — Y 45, 1/d?),
and then show that )., 1/d? < 3/4.

EXERCISE 1.34. This exercise develops a characterization of least common mul-
tiples in terms of ideals.
(a) Arguing directly from the definition of an ideal, show that if / and J are
ideals of Z, thensois I N J.
(b) Leta,b € Z, and consider the ideals I := aZ and J := bZ. By part (a),
we know that / N J is an ideal. By Theorem 1.6, we know that I NJ = mZ

for some uniquely determined non-negative integer m. Show that m =
lem(a, b).
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Congruences

This chapter introduces the basic properties of congruences modulo 7, along with
the related notion of residue classes modulo #n. Other items discussed include the
Chinese remainder theorem, Euler’s phi function, Euler’s theorem, Fermat’s little
theorem, quadratic residues, and finally, summations over divisors.

2.1 Equivalence relations
Before discussing congruences, we review the definition and basic properties of
equivalence relations.
Let S be a set. A binary relation ~ on § is called an equivalence relation if it

is

reflexive: a ~ a foralla € S,

symmetric: a ~ b implies b ~ a foralla,b € S, and

transitive: a ~ b and b ~ ¢ impliesa ~ ¢ foralla,b,c € S.

If ~ is an equivalence relation on S, then for a € S one defines its equivalence
class astheset {x € S : x ~a}.

Theorem 2.1. Let ~ be an equivalence relation on a set S, and for a € S, let [a]
denote its equivalence class. Then forall a,b € S, we have

(i) a € [a];
(ii) a € [b] implies [a] = [b].

Proof. (i) follows immediately from reflexivity. For (ii), suppose a € [b], so that
a ~ b by definition. We want to show that [a] = [b]. To this end, consider any

14
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x € S. We have

x € [a] = x ~ a (by definition)
= x ~ b (by transitivity, and since x ~ @ and a ~ b)
= x € [b].

Thus, [a] C [b]. By symmetry, we also have b ~ a, and reversing the roles of a
and b in the above argument, we see that [b] C [a]. O

This theorem implies that each equivalence class is non-empty, and that each
element of S belongs to a unique equivalence class; in other words, the distinct
equivalence classes form a partition of S (see Preliminaries). A member of an
equivalence class is called a representative of the class.

EXERCISE 2.1. Consider the relations =, <, and < on the set R. Which of these
are equivalence relations? Explain your answers.

EXERCISE 2.2. Let S := R x R\ {(0,0)}. For (x,y),(x’,y") € S, let us say
(x,y) ~ (x',y') if there exists a real number A > 0 such that (x, y) = (Ax’, 1y’).
Show that ~ is an equivalence relation; moreover, show that each equivalence class
contains a unique representative that lies on the unit circle (i.e., the set of points
(x, y) such that x2 4 y2 = 1).

2.2 Definitions and basic properties of congruences

Let n be a positive integer. For integers a and b, we say that a is congruent to
modulo n if n | (a —b), and we write @ = b (mod n). If n } (a —b), then we write
a # b (mod n). Equivalently, a = b (mod n) if and only if @« = b + ny for some
y € Z. The relation a = b (mod n) is called a congruence relation, or simply, a
congruence. The number n appearing in such congruences is called the modulus
of the congruence. This usage of the “mod” notation as part of a congruence is not
to be confused with the “mod” operation introduced in §1.1.

If we view the modulus n as fixed, then the following theorem says that the
binary relation “- = - (mod n)” is an equivalence relation on the set Z.

Theorem 2.2. Let n be a positive integer. For all a,b,c € Z, we have:
(i) a = a (mod n);
(ii) a = b (mod n) implies b = a (mod n),

(iii) a = b (mod n) and b = ¢ (mod n) implies a = ¢ (mod n).

Proof. For (i), observe that n divides 0 = a — a. For (ii), observe that if n divides



16 Congruences

a — b, then it also divides —(a¢ — b) = b — a. For (iii), observe that if n divides
a —b and b — ¢, then it also divides (a —b) + (b —¢c) =a —c. O

Another key property of congruences is that they are “compatible” with integer
addition and multiplication, in the following sense:
Theorem 2.3. Leta,a’,b,b’,n € Z withn > 0. If

a=a (modn) and b = b’ (mod n),
then
a+b=a +b (modn) and a-b=d -b" (modn).
Proof. Suppose that a = a’ (mod n) and b = b’ (mod n). This means that there
exist integers x and y such thata = a’ + nx and b = b’ + ny. Therefore,
a+b=d +b +n(x+y),
which proves the first congruence of the theorem, and
ab = (a' + nx)(b' +ny) =ada'b’ +n(d'y + b'x + nxy),

which proves the second congruence. [J

Theorems 2.2 and 2.3 allow one to work with congruence relations modulo n
much as one would with ordinary equalities: one can add to, subtract from, or
multiply both sides of a congruence modulo n by the same integer; also, if b is
congruent to a modulo 1, one may substitute b for a in any simple arithmetic ex-

pression (involving addition, subtraction, and multiplication) appearing in a con-
gruence modulo 7.

Now suppose a is an arbitrary, fixed integer, and consider the set of integers z
that satisfy the congruence z = a (mod n). Since z satisfies this congruence if and
only if z = a 4+ ny for some y € Z, we may apply Theorems 1.4 and 1.5 (with
a as given, and b := n) to deduce that every interval of n consecutive integers
contains exactly one such z. This simple fact is of such fundamental importance
that it deserves to be stated as a theorem:

Theorem 2.4. Let a,n € Z withn > 0. Then there exists a unique integer z such
that z = a (mod n) and 0 < z < n, namely, z ;== a mod n. More generally, for
every x € R, there exists a unique integer z € [x, x + n) such that z = a (mod n).

Example 2.1. Let us find the set of solutions z to the congruence

3z +4 =6 (mod 7). 2.1
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Suppose that z is a solution to (2.1). Subtracting 4 from both sides of (2.1), we
obtain

3z =2 (mod 7). 2.2)

Next, we would like to divide both sides of this congruence of 3, to get z by itself
on the left-hand side. We cannot do this directly, but since 5-3 = 1 (mod 7), we
can achieve the same effect by multiplying both sides of (2.2) by 5. If we do this,
and then replace 5-3 by 1, and 5 - 2 by 3, we obtain

z =3 (mod 7).

Thus, if z is a solution to (2.1), we must have z = 3 (mod 7); conversely, one can
verify that if z = 3 (mod 7), then (2.1) holds. We conclude that the integers z that
are solutions to (2.1) are precisely those integers that are congruent to 3 modulo 7,
which we can list as follows:

..,—18,-11,—4,3,10,17,24,... O

In the next section, we shall give a systematic treatment of the problem of solving
linear congruences, such as the one appearing in the previous example.

EXERCISE 2.3. Leta,b,n € Z withn > 0. Show that a = b (mod n) if and only
if (a mod n) = (b mod n).

EXERCISE 2.4. Leta,b,n € Z withn > 0 and a = b (mod n). Also, let
€0,C1,...,Ck € Z. Show that

c0+c1a+---+ckak Ec0+c1b+---+ckbk (mod n).

EXERCISE 2.5. Leta,b,n,n’ € Z withn > 0,n’ > 0, and n’ | n. Show that if
a = b (mod n), thena = b (mod n’).

EXERCISE 2.6. Leta,b,n,n’ € Z withn > 0,n’ > 0, and gcd(n,n’) = 1. Show
thatif ¢ = b (mod n) and a = b (mod n’), then a = b (mod nn').

EXERCISE 2.7. Let a,b,n € Z withn > Oanda = b (mod n). Show that
gcd(a,n) = ged(b, n).

EXERCISE 2.8. Let a be a positive integer whose base-10 representation is a =
(ag_1---aiao)10- Let b be the sum of the decimal digits of a; that is, let b :=
ap+ai+---+ag_q. Show thata = b (mod 9). From this, justify the usual “rules
of thumb” for determining divisibility by 9 and 3: a is divisible by 9 (respectively,
3) if and only if the sum of the decimal digits of a is divisible by 9 (respectively,
3).
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EXERCISE 2.9. Let e be a positive integer. For a € {0,...,2¢ — 1}, let a denote
the integer obtained by inverting the bits in the e-bit, binary representation of a
(note thata € {0, ...,2°—1}). Show that @ + 1 = —a (mod 2°). This justifies the
usual rule for computing negatives in 2’s complement arithmetic (which is really
just arithmetic modulo 2°).

EXERCISE 2.10. Show that the equation 7y3 4+ 2 = z3 has no solutions y, z € Z.

EXERCISE 2.11. Show that there are 14 distinct, possible, yearly (Gregorian) cal-
endars, and show that all 14 calendars actually occur.

2.3 Solving linear congruences

In this section, we consider the general problem of solving linear congruences.
More precisely, for a given positive integer n, and arbitrary integers a and b, we
wish to determine the set of integers z that satisfy the congruence

az =b (mod n). 2.3)

Observe that if (2.3) has a solution z, and if z = z’ (mod n), then z’ is also a
solution to (2.3). However, (2.3) may or may not have a solution, and if it does,
such solutions may or may not be uniquely determined modulo n. The following
theorem precisely characterizes the set of solutions of (2.3); basically, it says that
(2.3) has a solution if and only if d := gcd(a,n) divides b, in which case the
solution is uniquely determined modulo n/d .

Theorem 2.5. Leta,n € Z withn > 0, and let d := gcd(a, n).

(i) Forevery b € Z, the congruence az = b (mod n) has a solution z € Z if
and only if d | b.
(ii) Foreveryz € Z, we have az = 0 (mod n) ifand only if z = 0 (mod n/d).

(iii) For all z,z/ € Z, we have az = az' (mod n) if and only if z
z' (mod n/d).

Proof. For (i), let b € Z be given. Then we have

az = b (mod n) forsomez € Z
<= az = b + ny forsome z,y € Z (by definition of congruence)
< az—ny =b forsomez,y € Z
<= d | b (by Theorem 1.8).

For (ii), we have

nlaz < n/d | (a/d)z < n/d | z.
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All of these implications follow rather trivially from the definition of divisibility,
except that for the implication n/d | (a/d)z = n/d | z, we use Theorem 1.9
and the fact that ged(a/d,n/d) = 1.
For (iii), we have
az =az' (modn) < a(z—z') =0 (mod n)
& z—z'=0(modn/d) (by part (ii))
& z=7 (modn/d). O
We can restate Theorem 2.5 in more concrete terms as follows. Leta,n € Z

with n > 0, and let d := gcd(a,n). Let I, := {0,...,n — 1} and consider the
“multiplication by a” map

g: In— Iy
z+> az mod n.
The image of 1, consists of the n/d integers
i-d i=0,...,n/d—1).
Moreover, every element b in the image of t, has precisely d pre-images
zo+j-(n/d) (j =0,....,d —1),

where zg € {0,...,n/d — 1}. In particular, t, is a bijection if and only if @ and n
are relatively prime.

Example 2.2. The following table illustrates what Theorem 2.5 says for n = 15
anda =1,2,3,4,5,6.

z|O|1] 2| 3 51 6| 7| 8| 9|10(11|12|13|14
2zmod15|0|2| 4| 6| 8|10(12|14| 1| 3| 5| 7| 9|11 13
3zmod15|0|3| 6| 9|12 0| 3| 6| 9|12| O 3| 6| 9|12
4zmod15|0 (4| 8|12 1| 5| 9|13 2| 6(10|14| 3| 7|11
52mod15|0|5|10| O 5{10| O| 5|10 O| 5(10| O| 5|10
6zmod15|0|6|12| 3| 9| 0| 6(12| 3| 9| O 6|12| 3| 9

In the second row, we are looking at the values 2z mod 15, and we see that this
row is just a permutation of the first row. So for every b, there exists a unique z
such that 2z = b (mod 15). This is implied by the fact that ged(2, 15) = 1.

In the third row, the only numbers hit are the multiples of 3, which follows from
the fact that ged(3, 15) = 3. Also note that the pattern in this row repeats every
five columns; that is, 3z = 3z’ (mod 15) if and only if z = z’ (mod 5).
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In the fourth row, we again see a permutation of the first row, which follows
from the fact that gcd(4, 15) = 1.

In the fifth row, the only numbers hit are the multiples of 5, which follows from
the fact that ged(5, 15) = 5. Also note that the pattern in this row repeats every
three columns; that is, 5z = 5z’ (mod 15) if and only if z = z’ (mod 3).

In the sixth row, since gcd(6, 15) = 3, we see a permutation of the third row.
The pattern repeats after five columns, although the pattern is a permutation of the
pattern in the third row. [

We develop some further consequences of Theorem 2.5.

A cancellation law. Let a,n € Z with n > 0. Part (iii) of Theorem 2.5 gives us a
cancellation law for congruences:

if gcd(a,n) = 1 and az = az’ (mod n), then z = z’ (mod n).
Example 2.3. Observe that
5:2=5-(—4) (mod 6). 2.4)

Theorem 2.5 tells us that since gcd(5,6) = 1, we may cancel the common factor
of 5 from both sides of (2.4), obtaining 2 = —4 (mod 6), which one can also verify
directly.

Next observe that

3.5=3-3 (mod 6). 2.5)

We cannot simply cancel the common factor of 3 from both sides of (2.5); indeed,
5 # 3 (mod 6). However, gcd(3, 6) = 3, and as Theorem 2.5 guarantees, we do
indeed have 5 = 3 (mod 2). O

Modular inverses. Again, let a,n € Z withn > 0. Wesay that z € Z is a
multiplicative inverse of ¢ modulo 7 if az = 1 (mod n). Part (i) of Theorem 2.5
says that ¢ has a multiplicative inverse modulo # if and only if ged(a,n) = 1.
Moreover, part (iii) of Theorem 2.5 says that the multiplicative inverse of a, if
it exists, is uniquely determined modulo #; that is, if z and z’ are multiplicative
inverses of @ modulo 7, then z = z’ (mod n). Note that if z is a multiplicative
inverse of @ modulo 7, then a is a multiplicative inverse of z modulo n. Also note
that if a = @’ (mod n), then z is a multiplicative inverse of @ modulo # if and only
if z is a multiplicative inverse of ¢’ modulo 7.

Now suppose that a,b,n € Z withn > 0, a # 0, and gcd(a,n) = 1. Theo-
rem 2.5 says that there exists a unique integer z satisfying

az=b(modn) and 0 <z <n.

Setting s := b/a € Q, we may generalize the “mod” operation, defining s mod n
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to be this value z. As the reader may easily verify, this definition of s mod n
does not depend on the particular choice of fraction used to represent the rational
number s. With this notation, we can simply write ! mod n to denote the unique
multiplicative inverse of @ modulo # that lies in the interval O, ...,n — 1.

Example 2.4. Looking back at the table in Example 2.2, we see that
27 mod 15 =8 and 47! mod 15 = 4,

and that neither 3, 5, nor 6 have modular inverses modulo 15. [0

EXERCISE 2.12. Let ay,...,ag,b,n be integers with n > 0, and let d :=
gcd(ay, ..., ar,n). Show that the congruence

aizi + -+ agzp = b (mod n)
has a solution z1,...,z; € Z ifand only if d | b.

EXERCISE 2.13. Let p be a prime, and let a, b, ¢, e be integers, such that e > 0,
a # 0 (mod p¢)),and 0 < ¢ < p°. Let N be the number of integers z €
{0,..., p?¢ — 1} such that

L((az + b) mod p*°) /peJ =c.
Show that N = p°.

2.4 The Chinese remainder theorem

Next, we consider systems of linear congruences with respect to moduli that are
relatively prime in pairs. The result we state here is known as the Chinese remain-
der theorem, and is extremely useful in a number of contexts.

Theorem 2.6 (Chinese remainder theorem). Let {n; }f.‘zl be a pairwise relatively
prime family of positive integers, and let ay, ... ,ay be arbitrary integers. Then
there exists a solution a € Z to the system of congruences

a=a; (modn;) (i =1,...,k).

Moreover, any a’ € Z is a solution to this system of congruences if and only if
a = d’ (mod n), where n := ]_[f;l n;.

Proof. To prove the existence of a solution a to the system of congruences, we first
show how to construct integers ey, ..., e such thatfori, j = 1,...,k, we have

1 (mod n;) if j =1,
0 (mod n;) ifj #1i.

e 2.6)
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If we do this, then setting

k
a = E ae;,

i=1
one sees that for j = 1,...,k, we have

k
a= Zaiei = a; (mod n;),
i=1
since all the terms in this sum are zero modulo n;, except for the term i = j,
which is congruent to a; modulo 7;.

To construct eq, . . ., ex satistying (2.6), letn := ]_[5(:1 n; as in the statement of
the theorem, and fori = 1,...,k, let n;“ := n/n;; that is, n;“ is the product of all
the moduli n; with j # i. From the fact that {n; }le is pairwise relatively prime,
it follows that for i = 1,...,k, we have gcd(ni,n;") = 1, and so we may define
t = (n;-")_1 mod n; and e; := n;t;. One sees that e; = 1 (mod n;), while for
j #i,wehaven; | n;‘, and so e; = 0 (mod 7n;). Thus, (2.6) is satisfied.

That proves the existence of a solution a to the given system of congruences.
If a = a’ (mod n), then since n; | n fori = 1,...,k, we see thata’ = a =
a; (mod n;) fori = 1,...,k, and so a’ also solves the system of congruences.

Finally, if a’ is a solution to the given system of congruences, then a = a; =
a’ (mod n;) fori = 1,...,k. Thus, n; | (a —a’) fori = 1,...,k. Since
{n; }f‘zl is pairwise relatively prime, this implies that n | (¢ — a’), or equivalently,
a=a' (modn). O

We can restate Theorem 2.6 in more concrete terms, as follows. For each positive
integer m, let I, denote {0,...,m — 1}. Suppose {ni}f-‘:1 is a pairwise relatively
prime family of positive integers, and set n := nj - - - ng. Then the map

T Iy = Iny XX Iy,
at+> (@amodny,...,a mod ng)
is a bijection.

Example 2.5. The following table illustrates what Theorem 2.6 says for ny = 3
and np, = 5.

al0(1|2(3|4|5|6|7[8|9|10|11|12|13]|14
a mod 3 11 21 0 1| 2
amod5(0|1({2|3(|4(0|1(2|3[4| 0| 1| 2| 3| 4

(e)
—
\S]
(e)
—_
[\
(e)
—_
[\
(e)

We see that as a ranges from 0 to 14, the pairs (¢ mod 3, a mod 5) range over
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all pairs (a1, as) withay € {0,1,2} and a, € {0, ..., 4}, with every pair being hit
exactly once. [

EXERCISE 2.14. Compute the values ey, e, e3 in the proof of Theorem 2.6 in the
case where k = 3, n1 = 3,np = 5, and n3 = 7. Also, find an integer a such that
a=1(mod3),a=-1(mod5),anda = 5 (mod 7).

EXERCISE 2.15. If you want to show that you are a real nerd, here is an age-
guessing game you might play at a party. You ask a fellow party-goer to divide his
age by each of the numbers 3, 4, and 5, and tell you the remainders. Show how to
use this information to determine their age.

EXERCISE 2.16. Let {ni}f.‘zl be a pairwise relatively prime family of positive
integers. Letay,...,a and by, ..., by be integers, and set d; := gcd(a;, n;) for
i = 1,...,k. Show that there exists an integer z such that a;z = b; (mod n;) for
i=1,...,kifandonlyif d; | b; fori =1,...,k.

EXERCISE 2.17. For each prime p, let v,(-) be defined as in §1.3. Let p1,..., pr
be distinct primes, a1, . . . , a, be arbitrary integers, and ey, . . ., e, be arbitrary non-
negative integers. Show that there exists an integer a such that vy, (@ —a;) = e;
fori =1,...,r.

EXERCISE 2.18. Suppose n; and n, are positive integers, and let d :=
gcd(ny,n2). Letag and a, be arbitrary integers. Show that there exists an integer a
such thata = a; (mod n1) and a = a» (mod ny) if and only if a; = a» (mod d).

2.5 Residue classes
As we already observed in Theorem 2.2, for any fixed positive integer n, the binary
relation “- = - (mod n)” is an equivalence relation on the set Z. As such, this
relation partitions the set Z into equivalence classes. We denote the equivalence
class containing the integer a by [a],, and when 7 is clear from context, we simply
write [a]. By definition, we have

z€la] <= z=a(modn) <= z =a+nyforsomey € Z,
and hence
[al=a+nZ :={a+ny:ye.

Historically, these equivalence classes are called residue classes modulo 7, and we
shall adopt this terminology here as well. Note that a given residue class modulo n
has many different “names”; for example, the residue class [# — 1] is the same as
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the residue class [—1]. Any member of a residue class is called a representative of
that class.

We define Z,, to be the set of residue classes modulo 7. The following is simply
a restatement of Theorem 2.4:

Theorem 2.7. Let n be a positive integer. Then Z,, consists of the n distinct residue
classes [0],[1], ..., [n — 1]. Moreover, for every x € R, each residue class modulo
n contains a unique representative in the interval [x, x + n).

When working with residue classes modulo 7, one often has in mind a partic-
ular set of representatives. Typically, one works with the set of representatives
{0,1,...,n — 1}. However, sometimes it is convenient to work with another set
of representatives, such as the representatives in the interval [—n/2,7n/2). In this
case, if n is odd, we can list the elements of Z,, as

[~(n=1)/2],....[=1L[0L[1],....[(n = 1)/2],

and when 7 is even, we can list the elements of Z,, as

[n/2],....[=11. [0}, 1], ..., [n/2 — 1.

We can “equip” Z, with binary operations defining addition and multiplication
in a natural way as follows: for a, b € Z, we define

[a] + [b] := [a + b].
[a] - [P] := [a - b].

Of course, one has to check this definition is unambiguous, in the sense that
the sum or product of two residue classes should not depend on which particular
representatives of the classes are chosen in the above definitions. More precisely,
one must check that if [a] = [¢’] and [b] = [b’], then [a + b] = [a’ + b’] and
[a - b] = [a’ - b']. However, this property follows immediately from Theorem 2.3.

Observe that for all a, b, ¢ € Z, we have

l[a] + [p] = [c] <= a + b = c (mod n),
and

[a] - [p] = [c] < a-b =c (mod n),
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Example 2.6. Consider the residue classes modulo 6. These are as follows:

0] =4{...,—12,-6,0,6,12,...}
] ={...,—11,-5,1,7,13,.. .}
2]=1{...,—10,—4,2,8,14,...}
Bl={..,-9,-3,3,9,15,.. .}
4] =1{...,-8,-2,4,10,16,...}
5l={...-7,-1,511,17,..}
Let us write down the addition and multiplication tables for Z¢. The addition table
looks like this:
-0 [ 2B
(1| [or [ @2 Bl 4 [
(| 0 21 381 [4 [51 [0]

(21|21 (31 [4 [5 [o] [1]
B (31 [4 [51 [o] [1] [2]
(414 [51 o] (1] 2] [3]
(51151 [0 (1 21 3] [4]

The multiplication table looks like this:

- [ [o] [ 21 B 4 5]
[0 | [0] [0] [0] [o] (o] [O]

(| [ 2 Bl 4 B>

(21| [0] [2] [4 [o] [2] [4]

(Bl [0 31 [0] [3] [0] [3]

(41 | [0 [4] [2] [0] [4] [2]

(51 (o1 51 4 (Bl 21 [1]

Instead of using representatives in the interval [0,6), we could just as
well use representatives from another interval, such as [—3,3). Then, in-
stead of naming the residue classes [0], [1], [2], [3], [4], [5], we would name them
[=3], [-2], [-1],[0], [1], [2]. Observe that [-3] = [3], [-2] = [4], and [-1] = [3].
O

Algebraic properties

These operations on Z, yield a very natural algebraic structure. For exam-
ple, addition and multiplication are commutative and associative; that is, for all
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o, B,y € Z,, we have

atf=pF+a (@+Bf)+ty=a+(B+y).
ap = fa, (ap)y = a(py).

Note that we have adopted here the usual convention of writing @8 in place of « - .
Furthermore, multiplication distributes over addition; that is, for all «, B,y € Z,,
we have

a(f+y)=oaf +ay.

All of these properties follow from the definitions, and the corresponding proper-
ties for Z; for example, the fact that addition in Z, is commutative may be seen as
follows: if & = [a] and B = [b], then

a+B=la+pl=la+bl=[b+al=[b]+[a = B +a.

Because addition and multiplication in Z, are associative, for &1, ..., 0 € Zy,
we may write the sum o + - -+ + « and the product «; - - - @ without any paren-
thesis, and there is no ambiguity; moreover, since both addition and multiplication
are commutative, we may rearrange the terms in such sums and products without
changing their values. Further, from the distributive law, for all 8 € Z,,, we have

Blar + -+ a) = Bay + -+ + Po.

The residue class [0] acts as an additive identity; that is, for all « € Z,, we
have o + [0] = «; indeed, if & = [a], then a +0 = a (mod n). Moreover, [0] is the
only element of Z, that acts as an additive identity; indeed, if @ + z = a (mod n)
holds for all integers a, then it holds in particular for a = 0, which implies z =
0 (mod n). The residue class [0] also has the property that o - [0] = [0] for all
o€ Z,.

Every a € Z, has an additive inverse, that is, an element § € Z, such that
a + B = [0]; indeed, if @ = [a], then clearly B := [—a] does the job, since
a + (—a) = 0 (mod n). Moreover, a has at most one additive inverse; indeed, if
a + z = 0 (mod n), then subtracting a from both sides of this congruence yields
z = —a (mod n). We naturally denote the additive inverse of o by —c. Observe
that the additive inverse of —« is «; that is —(—a) = «. Also, we have the identities

—(@+ ) = (=) + (=h), —)f = —(af) = a(=p), (-a)(=p) = ap.

For «, B € Z,, we naturally write @ — 8 for o 4+ (—p).

The residue class [1] acts as a multiplicative identity; that is, for all « € Z,,
we have « - [1] = «; indeed, if « = [a], then a - 1 = a (mod n). Moreover, [1]
is the only element of Z, that acts as a multiplicative identity; indeed, if a - z =
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a (mod n) holds for all integers a, then in particular, it holds for ¢ = 1, which
implies z = 1 (mod n).

For « € Z,, we call B € Z, a multiplicative inverse of « if «f = [1]. Not
all « € Z, have multiplicative inverses. If « = [a] and B = [b], then f is a
multiplicative inverse of « if and only if ab = 1 (mod n). Theorem 2.5 implies
that o has a multiplicative inverse if and only if gcd(a, n) = 1, and that if it exists,
it is unique. When it exists, we denote the multiplicative inverse of o by o~ !.

We define Z; to be the set of elements of Z,, that have a multiplicative inverse.
By the above discussion, we have

Z; ={la]:a=0.....n—1, ged(a.n) = 1}.

If n is prime, then ged(a,n) = 1 fora = 1,...,n — 1, and we see that Z; =
Zn \ {[0]}. If n is composite, then Z; & Z, \ {[0]}; for example, if d | n with
1 < d < n, we see that [d] is not zero, nor does it belong to Z. Observe that if
a, B € Z}, then so are @~ ! and af; indeed,

@ H'=w and (@f) ' =a"1p7L.

For o € Z, and B € Z};, we naturally write o/ for o~ 1.
Suppose «, B, y are elements of Z,, that satisfy the equation

aff = ay.
If @ € Z*, we may multiply both sides of this equation by a~! to infer that
p=v

This is the cancellation law for Z,,. We stress the requirement that @ € Z}, and
not just a # [0]. Indeed, consider any o € Z, \ Z};. Then we have o = [a] with
d := gcd(a,n) > 1. Setting B := [n/d] and y := [0], we see that

af =ay and B # .

Example 2.7. We list the elements of Z75, and for each o € Z7, we also give

15°
a L,
(11| 21 ) [41 | [71 | [8] [ [11] | [13] | [14]
o U {17 | (81| [41 ]| [13] | [2] | [11] | [71] [14]
O
Notational conventions
For ay, ..., € Z,, we may naturally write their sum as Zf;lai. By conven-

tion, this sum is [0] when k = 0. It is easy to see that — Zf-;l i = Z{;l(—ai);
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that is, the additive inverse of the sum is the sum of the additive inverses. In the
special case where all the «;’s have the same value o, we define ko := Z{;l o;
thus, O = [0], la = o, 20 = o + @, 3¢ = a + o + «, and so on.
The additive inverse of ko is k(—«), which we may also write as (—k)«; thus,
(Do = —a, (2)a = (—a) + (—¢) = —(¢ + «), and so on. Therefore, the
notation k« is defined for all integers k. Note that for all integers k and a, we have
kla] = [ka] = [k][a].
Forall o, B € Z, and k,{ € Z, we have the identities:

k(la) = (ko = L(ka), (k + Oa = ka + Lo, k(e + B) = ka + kB,
(ka)B = k(ap) = a(kp).

Analogously, for «,...,0r € Z,, we may write their product as ]_[f-c=1 a;. By
convention, this product is [1] when k = 0. It is easy to see that if all of the
@;’s belong to Z}, then so does their product, and in particular, (]_[f-;l o)l =
]_[f-;l o 1. that is, the multiplicative inverse of the product is the product of the
multiplicative inverses. In the special case where all the «;’s have the same value
a, we define of = ]_[5;1 o; thus, ¢® = [1], al = o, a? = aw, @® = eaa, and so
on. If « € Z}, then the multiplicative inverse of ok is (@~ 1)k, which we may also
write as oz_k; for example, a2=qg g7l = (aa)_l. Therefore, when o € ZZ,
the notation «¥ is defined for all integers k.

For all o, B € Z, and all non-negative integers k and £, we have the identities:
(ae)k — ak( — (ak)e’ ak-i—@ — OlkOlZ, ((X,B)k — O(kﬂk. (27)

If o, B € Z}, the identities in (2.7) hold for all k, £ € Z.

One last notational convention. As already mentioned, when the modulus n
is clear from context, we usually write [a] instead of [a],. Although we want to
maintain a clear distinction between integers and their residue classes, occasionally
even the notation [a] is not only redundant, but distracting; in such situations, we
may simply write a instead of [a]. For example, for every « € Z,, we have the
identity (o + [1]n)(o — [1]n) = &? — [1],, which we may write more simply as
(o + [1]) (e = [1]) = a?® —[1], or even more simply, and hopefully more clearly, as
(o 4+ 1)(a — 1) = a? — 1. Here, the only reasonable interpretation of the symbol
“1” is [1], and so there can be no confusion.

Summary

In summary, algebraic expressions involving residue classes may be manipulated
in much the same way as expressions involving ordinary numbers. Extra compli-
cations arise only because when n is composite, some non-zero elements of Z; do
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not have multiplicative inverses, and the usual cancellation law does not apply for
such elements.

In general, one has a choice between working with congruences modulo 7, or
with the algebraic structure Z,; ultimately, the choice is one of taste and conve-
nience, and it depends on what one prefers to treat as “first class objects”: integers
and congruence relations, or elements of Z,,.

An alternative, and somewhat more concrete, approach to defining Z, is to di-
rectly define it to consist of the n “symbols” [0], [1], ..., [# — 1], with addition and
multiplication defined as

[a] + [b] ;= [(a + b) mod n], [a]-[b] := [(a-b) mod K],

fora,b € {0,...,n — 1}. Such a definition is equivalent to the one we have given
here. One should keep this alternative characterization of Z, in mind; however, we
prefer the characterization in terms of residue classes, as it is mathematically more
elegant, and is usually more convenient to work with.

The Chinese remainder map

We close this section with a reinterpretation of the Chinese remainder theorem
(Theorem 2.6) in terms of residue classes.

Theorem 2.8 (Chinese remainder map). Let {ni}f.‘zl be a pairwise relatively
prime family of positive integers, and let n := ]_[;;1 n;. Define the map
0: Zpn—Zpy X+ XLy,
[aln = ([aln,. ..., [aln;)-
(i) The definition of 6 is unambiguous.
(ii) O is bijective.
(iii) Foralla,B € Zy, if0(a) = (x1,...,a) and 0(B) = (B1,..., Br), then
(a) O(a + B) = (a1 + B1,...,ax + Br),
(b) 0(—a) = (—aq,...,—ag),
(c) 0(eB) = (1p1, ..., axPk).
(d) o € Z} if and only if a; € ZZi fori = 1,...,k, in which case
O™l = (cxl_l,...,cx,:l).

Proof. For (i), note thata = a’ (mod n) impliesa = a’ (mod n;) fori = 1,...,k,
and so the definition of 6 is unambiguous (it does not depend on the choice of a).
(ii) follows directly from the statement of the Chinese remainder theorem.
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For (iii), let @ = [a], and B = [b],, sothatfori = 1,...,k, wehave o; = [a]n;
and B; = [b],;. Then we have
Q(O{-i-ﬁ) = 9([a+b]n) = ([Cl+b]n1 yeee [a+b]nk) = (Ol] +/31’ ceeL U +ﬁk)’
0(—a) = 0([—aln) = ([—aln,.....[-aln,) = (—a1,...,—ag), and
0(ap) = 0([adln) = ([abln,. ... [abln,) = (@1B1.....kPk)-
That proves parts (a), (b), and (c). For part (d), we have
a€”Z, < gcd(a,n) =1
< gcd(a,n;) =1 fori =1,...,k
= EZZ:‘ fori =1,....,k.

Moreover, if @ € Z and f = a~ ! then

(1B, ....arxPr) = 0(eB) = 0([1]n) = (U, - .. [Uny),
andso fori =1,...,k, we have o; B; = [1],,, which is to say B; = oci_l. O

Theorem 2.8 is very powerful conceptually, and is an indispensable tool in many
situations. It says that if we want to understand what happens when we add or
multiply o, B € Z,, it suffices to understand what happens when we add or mul-
tiply their “components” «;, B; € Z,,. Typically, we choose ni,...,n; to be
primes or prime powers, which usually simplifies the analysis. We shall see many
applications of this idea throughout the text.

EXERCISE 2.19. Let 0 : Z,, — Z,, X-+-xZpy, be as in Theorem 2.8, and suppose

that 8(«) = (a1,...,0). Show that for every non-negative integer m, we have
O(a™) = (aft, ..., a"). Moreover, if @ € Z;, show that this identity holds for all
integers m.

EXERCISE 2.20. Let p be an odd prime. Show that Y gczs 7' = Ypezs B =
0.

EXERCISE 2.21. Let p be an odd prime. Show that the numerator of 7, :_11 1/i
is divisible by p.

EXERCISE 2.22. Suppose n is square-free (see Exercise 1.15), and let o, 8,y €
Z,. Show that a? = o2y implies o = ay.

2.6 Euler’s phi function

For each positive integer n, we define ¢(n) := |Z;|. Equivalently, ¢(n) is equal
to the number of integers between 0 and n — 1 that are relatively prime to n. For



2.6 Euler’s phi function 31

example, ¢(1) = 1, ¢(2) = 1, $(3) = 2, and ¢(4) = 2. The function ¢ is called
Euler’s phi function (or Euler’s totient function).

Using the Chinese remainder theorem, more specifically Theorem 2.8, it is easy
to get a nice formula for ¢(n) in terms for the prime factorization of n, as we
establish in the following sequence of theorems.

Theorem 2.9. Let {n,-}f.‘=1 be a pairwise relatively prime family of positive inte-
gers, and let n := ]_[f:1 n;. Then

k
¢p(n) =[] o).

i=1
Proof. Consider the map 0 : Z,, — Z,, x -+ X Zy, in Theorem 2.8. By parts (ii)

and (iii.d) of that theorem, restricting 6 to Z yields a one-to-one correspondence
between Zj and Z;; x -+ x Z, . The theorem now follows immediately. [J

We already know that ¢(p) = p — 1 for every prime p, since the integers
1,..., p — 1 are not divisible by p, and hence are relatively prime to p. The next
theorem generalizes this, giving us a formula for Euler’s phi function at prime
powers.

Theorem 2.10. Let p be a prime and e be a positive integer. Then
¢(p) = p*H(p— 1.
Proof. The multiples of p among 0, 1,..., p¢ — 1 are
0-p,1-p, (P = 1) p,
of which there are precisely p¢~!. Thus, ¢(p¢) = p® — p¢~ ! = p¢~H(p—-1).0

Ifn = pf‘ -+« pe is the factorization of n into primes, then the family of prime
powers { pie" }7— s pairwise relatively prime, and so Theorem 2.9 implies ¢ (n) =
#(pi') -+~ ¢(pr"). Combining this with Theorem 2.10, we have:

Theorem 2.11. Ifn = pfl -+~ py" is the factorization of n into primes, then

o) =[] ri " pi-D=n]]-1/p.

i=1 i=1

EXERCISE 2.23. Show that ¢ (nm) = ged(n, m) - ¢p(Iem(n, m)).

EXERCISE 2.24. Show that if n is divisible by r distinct odd primes, then 2" |

P (n).
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EXERCISE 2.25. For every positive integer n, define ¢,(n) to be the number of
integers a € {0,...,n—1} such that gcd(a,n) = gcd(a+ 1,n) = 1. Suppose n =
pf‘ .-+ py’ is the factorization of n into primes. Show that ¢5(n) = n H{=1 (1-
2/pi).

2.7 Euler’s theorem and Fermat’s little theorem
Let n be a positive integer, and let « € Z. Consider the sequence of powers of a:

lzao,al,cxz,....

Since each such power is an element of Z}, and since Z is a finite set, this se-
quence of powers must start to repeat at some point; that is, there must be a positive
integer k such that ok = o forsomei = 0,....k — 1. Let us assume that k is
chosen to be the smallest such positive integer. We claim that i = 0, or equiva-
lently, ok = 1. To see this, suppose by way of contradiction that ak = o, for
somei = 1,...,k — 1. Then we can cancel @ from both sides of the equation
ok = o, obtaining a%1 = o'~ and this contradicts the minimality of k.

This value k is called the multiplicative order of «, and can be characterized as
the smallest positive integer k such that

ok = 1.

If « = [a] witha € Z (and ged(a,n) = 1, since @ € Z), then k is also called
the multiplicative order of ¢ modulo 7, and can be characterized as the smallest
positive integer k such that

ak =1 (mod n).

From the above discussion, we see that the first & powers of «, that is,
a® ol ,ozk_l, are distinct. Moreover, other powers of a simply repeat this

pattern. The following is an immediate consequence of this observation.

Theorem 2.12. Let n be a positive integer, and let o be an element of Z;; of multi-
plicative order k. Then for every i € Z, we have &' = 1 if and only if k divides i.
More generally, for all i, j € Z, we have o' = a’ if and only ifi = j (mod k).

Example 2.8. Letn = 7. Foreach valuea = 1, ..., 6, we can compute successive
powers of a modulo  to find its multiplicative order modulo 7.
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il1]2)3]4]5]6
'mod7 |11 |1]1|1]1
2’mod7 241 ]24]1
3 mod7|3|2|6|4|5]1
4 mod7 |4 |2|1(14]|2]|1
55mod7|5|4]6|2]3]1
6mod7|6[1]|6[1|6]1

So we conclude that modulo 7: 1 has order 1; 6 has order 2; 2 and 4 have order
3; and 3 and 5 have order 6. [J

Theorem 2.13 (Euler’s theorem). Let n be a positive integer and a € Z;. Then
a®® = 1. In particular, the multiplicative order of « divides ¢ (n).

Proof. Since o € Z;, for every B € Z we have aff € Z, and so we may define
the “multiplication by o map

ww: Z)—>7Z;
B = apf.
It is easy to see that 7, is a bijection:
Injectivity: If af = aff’, then cancel « to obtain § = f’.
Surjectivity: Forevery y € Z¥, ™!y is a pre-image of y under .

Thus, as B ranges over the set Z, so does o8, and we have
[18=1]w@p= a"’(")( I1 ﬁ). 2.8)
BeZy BeZ; BeZ};

Canceling the common factor [ [gc 7 B € Z;, from the left- and right-hand side of
(2.8), we obtain
1=a®,

That proves the first statement of the theorem. The second follows immediately
from Theorem 2.12. I

As a consequence of this, we obtain:

Theorem 2.14 (Fermat’s little theorem). For every prime p, and every a € Z,
we have a? = a.

Proof. If @« = 0, the statement is obviously true. Otherwise, « € Z3}, and by
Theorem 2.13 we have o”~! = 1. Multiplying this equation by « yields a? = «.
O



34 Congruences

In the language of congruences, Fermat’s little theorem says that for every prime
p and every integer a, we have

a? = a (mod p).

For a given positive integer n, we say that a € Z with ged(a,n) = 1lis a
primitive root modulo r if the multiplicative order of a modulo 7 is equal to ¢ (n).
If this is the case, then for o := [a] € Z};, the powers o range over all elements
of Z; as i ranges over the interval 0, ..., ¢(n) — 1. Not all positive integers have
primitive roots —we will see in §7.5 that the only positive integers n for which
there exists a primitive root modulo n are

n=124p°2p°
where p is an odd prime and e is a positive integer.

The following theorem is sometimes useful in determining the multiplicative
order of an element in Z ;.

Theorem 2.15. Suppose o € Z}; has multiplicative order k. Then for everym € Z,
the multiplicative order of o™ is k / gcd(m, k).

Proof. Applying Theorem 2.12 to o', we see that the multiplicative order of o™
is the smallest positive integer £ such that o™ = 1. But we have

™ =1 = ml=0 (mod k) (applying Theorem 2.12 to «)
<= { =0 (mod k/gcd(m, k)) (by Theorem 2.5). O

EXERCISE 2.26. Find all elements of Z7, of multiplicative order 18.

EXERCISE 2.27. Letn € Z withn > 1. Show that n is prime if and only if

a1 = 1 for every non-zero o € Z,,.

EXERCISE 2.28. Let n = pg where p and ¢ are distinct primes, and let m :=
lem(p — 1,9 — 1). Show that o™ = 1 forall « € Z.

EXERCISE 2.29. Let p be any prime other than 2 or 5. Show that p divides
infinitely many of the numbers 9, 99, 999, etc.

EXERCISE 2.30. Let n be an integer greater than 1. Show that n does not divide
2" — 1.

EXERCISE 2.31. Prove the following generalization of Fermat’s little theorem: for
every positive integer 1, and every o € Z,,, we have o” = =%,
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EXERCISE 2.32. This exercise develops an alternative proof of Fermat’s little the-
orem.

(a) Using Exercise 1.14, show that for all primes p and integers a, we have
(a+ 1)? =a? + 1 (mod p).

(b) Now derive Fermat’s little theorem from part (a).

2.8 Quadratic residues

In §2.3, we studied linear congruences. It is natural to study congruences of higher
degree as well. In this section, we study a special case of this more general prob-
lem, namely, congruences of the form z2 = a (mod n). The theory we develop
here nicely illustrates many of the ideas we have discussed earlier, and has a num-
ber of interesting applications as well.

We begin with some general, preliminary definitions and general observations
about powers in Z ;. For each integer m, we define

@)™ =A{B": B e Zy},

the set of mth powers in Z};. The set (Z;)" is non-empty, as it obviously contains
[1].
Theorem 2.16. Let n be a positive integer, let o, B € Z}, and let m be any integer.

(i) Ifa € (Z})™, thena™' € (Z})™.

(ii) Ifo € (Z;)™ and B € (Z;)™, then af € (Z;)™.

(iii) If o € (Z})™ and B ¢ (Z)", then aff & (Z;)™.
Proof. For (i), if ¢ = y™, thena™! = (y~1)™.

For (ii), if « = y™ and B = §™, then af = (y3)™.

(iii) follows from (i) and (ii). Suppose that @ € (Z;)™, B ¢ (Z;;)™, and af €

(Z)™. Then by (i), a~! € (Z¥)™, and by (ii), B = a~H(@B) € (Z})™, a
contradiction. (J

Theorem 2.17. Let n be a positive integer. For each a € Z}, and all {,m € Z
with ged(€,m) = 1, ifa* € (Z2)", then a € (Z¥)™.

Proof. Suppose ot = p™ € (Z;)™. Since ged(£,m) = 1, there exist integers s
and ¢ such that £s 4+ m¢ = 1. We then have

o = a€s+mt — O[ﬁswmt — ﬁmsamt — (,BSOlt)m c (Zz)m n

We now focus on the on squares in Z, rather than general powers. An integer a
is called a quadratic residue modulo 7 if gcd(a,n) = 1 and a = b? (mod n) for
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some integer b; in this case, we say that b is a square root of « modulo . In terms
of residue classes, a is a quadratic residue modulo 7 if and only if [a] € (Z})2.

To avoid some annoying technicalities, from now on, we shall consider only the
case where n is odd.

2.8.1 Quadratic residues modulo p

We first study quadratic residues modulo an odd prime p, and we begin by deter-
mining the square roots of 1 modulo p.

Theorem 2.18. Let p be an odd prime and B € Z,. Then f? = 1 if and only if
B ==+l

Proof. Clearly, if B = +1, then 82 = 1. Conversely, suppose that 82 = 1. Write
B = [b], where b € Z. Then we have b?> = 1 (mod p), which means that

pl®*=1)=>B-1b+1),

and since p is prime, we must have p | (b — 1) or p | (b + 1). This implies
b = %1 (mod p), or equivalently, § = +1. O

This theorem says that modulo p, the only square roots of 1 are 1 and —1, which
obviously belong to distinct residue classes (since p > 2). From this seemingly
trivial fact, a number of quite interesting and useful results may be derived.

Theorem 2.19. Let p be an odd prime and y, B € Z,,. Then y? = B? if and only
ify = £B.

Proof. This follows from the previous theorem:
y2=p> = (/p’ =1 <= y/p==%1 < y==4 0O

This theorem says that if « = B2 for some B € Zl”;, then o has precisely two
square roots: B and —f.

Theorem 2.20. Let p be an odd prime. Then |(Z;)2| =(p-1)/2

Proof. By the previous theorem, the “squaring map” o : Z; — Z; that sends
B to B2 is a two-to-one map: every element in the image of o has precisely two
pre-images. As a general principle, if we have a function f : A — B, where A
is a finite set and every element in f(A) has exactly d pre-images, then | f(A)| =
|A|/d. Applying this general principle to our setting, we see that the image of o is
half the size of Z},. O

Thus, for every odd prime p, exactly half the elements of Z; are squares, and
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half are non-squares. If we choose our representatives for the residue classes mod-
ulo p from the interval [-p/2, p/2), we may list the elements of Z, as

[—(p—1/2,....[-1L[0L1],....[(p — 1)/2].
We then see that Z; consists of the residue classes

and so (Z’;)2 consists of the residue classes

(1%, [(p = /2P,
which must be distinct, since we know that |(Z;)2| =(p—-1)/2.
Example 2.9. Let p = 7. We can list the elements of Z; as
[£1], [£2], [£3].
Squaring these, we see that
(Zp)? = {117, 1217, 31} = {[1]. 41, 21} O
We next derive an extremely important characterization of quadratic residues.

Theorem 2.21 (Euler’s criterion). Let p be an odd prime and o € Z;.
(i) «P7D/2 = 41,
(ii) Ifa € (Z;)2 then aP~V/2 = 1,
(iii) If a ¢ (Z;)2 then aP~V/2 — 1,

Proof. For (i), let y = a? —b/2, By Euler’s theorem (Theorem 2.13), we have

y2=aP =1,

and hence by Theorem 2.18, we have y = +£1.
For (ii), suppose that o = B2. Then again by Euler’s theorem, we have

aP=D/2 = (g2)(p=D/2 = gr—1 — |

For (iii), leta € Z; \ (Z;)z. We study the product

€:= 1_[ B.

BezZ;

We shall show that, on the one hand, ¢ = aP—D/ 2 while on the other hand,
€ =—1.

To show that ¢ = a(P~D/2 we group elements of Z; into pairs of distinct
elements whose product is «. More precisely, let P := {S C Z; . |S| = 2}, and
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define C := {{k,A} € P : kA = «}. Note that for every k € Z?, there is a unique
A€ Z; such that kA = «, namely, A := «/k; moreover, k # A, since otherwise,
we would have k2 = a, contradicting the assumption that o ¢ (Z;)z. Thus, every
element of Z; belongs to exactly one pair in C; in other words, the elements of C
form a partition of Z;. It follows that

€= l_[ (k-1) = l_[ o =P D/2,

{k,A}eC {k,A}eC
To show that ¢ = —1, we group elements of Z; into pairs of distinct elements
whose product is [1]. Define D := {{«x,A} € P : kA = 1}. Forevery k € Z3,
there exists a unique A € Zj such that kA = 1, namely, A := «~1; moreover,

k = A if and only if k2 = 1, and by Theorem 2.18, this happens if and only if
k = =%1. Thus, every element of Z; except for [+1] belongs to exactly one pair
in D; in other words, the elements of D form a partition of Z; \ {[£1]}. It follows

that
=[]-[-1- J] w-»=[1-[] =
{x,A}eD {k,\}eD
Thus, Euler’s criterion says that for every o € Z%, we have aP=D/2 = +1 and
a € (Z;’;)2 — oP7V/2 =

In the course of proving Euler’s criterion, we proved the following result, which
we state here for completeness:

Theorem 2.22 (Wilson’s theorem). Let p be an odd prime. Then [ | Bez:; B =-—1
In the language of congruences, Wilson’s theorem may be stated as follows:

(p—1!'=—1 (mod p).

We also derive the following simple consequence of Theorem 2.21:

Theorem 2.23. Let p be an odd prime and o, p € Z3. If « ¢ (Z})* and f ¢
(Z;)z, then aff € (Z;)z.

Proof. Suppose o ¢ (Z;)2 and 8 ¢ (Z;)z. Then by Euler’s criterion, we have
aP~D/2 = _1 and pP~V/2 = .

Therefore,
(a’B)(P—l)/Z — o(P—1/2 ,'3(1)—1)/2 =[-1]-[-1] =1,

which again by Euler’s criterion implies that o € (Z)*. O
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This theorem, together with parts (ii) and (iii) of Theorem 2.16, gives us the
following simple rules regarding squares in Z;:

square X square = square,
square X non-square = non-square,
non-square X non-square = square.

2.8.2 Quadratic residues modulo p°

We next study quadratic residues modulo p¢, where p is an odd prime. The key is
to establish the analog of Theorem 2.18:

Theorem 2.24. Let p be an odd prime, e be a positive integer, and B € Zpe. Then
B? = lifand only if B = £1.

Proof. Clearly, if 8 = +1, then B2 = 1. Conversely, suppose that 82 = 1. Write
B = [b], where b € Z. Then we have b> = 1 (mod p¢), which means that

Pl B*=1)=((h-1)b+1).

In particular, p | (b —1)(b + 1), andso p | (b — 1) or p | (b + 1). Moreover, p
cannot divide both b — 1 and b + 1, as otherwise, it would divide their difference
(b + 1) — (b — 1) = 2, which is impossible (because p is odd). It follows that
p¢ | (b—1)or p¢| (b + 1), whichmeans § = +1. O

Theorems 2.19-2.23 generalize immediately from Z to Zp.: we really used
nothing in the proofs of these theorems other than the fact that +1 are the only
square roots of 1 modulo p. As such, we state the analogs of these theorems for
Z;e without proof.

Theorem 2.25. Let p be an odd prime, e be a positive integer, and y, B € Z7%..
Then y? = B2 ifand only if y = +p.

Theorem 2.26. Let p be an odd prime and e be a positive integer. Then |(Z;e)2| =
P (p©)/2.

Theorem 2.27. Let p be an odd prime, e be a positive integer, and o € Z;e.
(i) a®P)/2 = £,
(ii) Ifa € (Z;g)2 then a®P)/2 — 1.
(iii) If o ¢ (Z;e)2 then a®@)/2 — _1.

Theorem 2.28. Let p be an odd prime and e be a positive integer. Then
[Tgez:, B =1
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Theorem 2.29. Let p be an odd prime, e be a positive integer, and o, B € Z;e. If
a ¢ (Z;;g)2 and B ¢ (Z*.)?, then aff € (Z*.)>.

It turns out that an integer is a quadratic residue modulo p€ if and only if it is a
quadratic residue modulo p.

Theorem 2.30. Let p be an odd prime, e be a positive integer, and a be any
integer. Then a is a quadratic residue modulo p¢ if and only if a is a quadratic
residue modulo p.

Proof. Suppose that a is a quadratic residue modulo p€. Then « is not divisible by
p and a = b? (mod p¢) for some integer b. It follows that @« = b (mod p), and
S0 a is a quadratic residue modulo p.

Suppose that a is not a quadratic residue modulo p¢. If a is divisible by p, then
by definition a is not a quadratic residue modulo p. So suppose a is not divisible
by p. By Theorem 2.27, we have

aP I -D/2 — (mod p°).

This congruence holds modulo p as well, and by Fermat’s little theorem (applied
e — 1 times),

2
Il
2
~
Il
N
~
Il
Il

aP! (mod p),
and so

=g D2 = ,(p-D))2 (mod p).

Theorem 2.21 therefore implies that a is not a quadratic residue modulo p. [J

2.8.3 Quadratic residues modulo n
We now study quadratic residues modulo 7, where #n is an arbitrary, odd integer,
withn > 1. Let
n=pi--pr
be the prime factorization of n. Our main tools here are the Chinese remainder
map
0:7Z, — prl Xoo X Z per,

introduced in Theorem 2.8, together with the results developed so far for quadratic

residues modulo odd prime powers.
Leta € Z; with 6(a) = (a1, ..., ).
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e On the one hand, suppose that « = B2 for some B € Z}. If 6(B) =
(B1.....Br), we have

@i,....ar) = 0(a) = 0(B%) = (B7.....B2).
where we have used part (iii.c) of Theorem 2.8. It follows that or; = ,812 for
eachi.

e On the other hand, suppose that for each i, o; = ,Blz for some B; € Z;ei .
Then setting 8 := 6~ 1(B1, ..., Br), we have

0(B?) = (BF.....B7) = (1,....0r) = O(),

where we have again used part (iii.c) of Theorem 2.8, along with the fact
that @ is bijective (to define 8). Thus, 8(ex) = 0(B?), and again since 6 is
bijective, it follows that o = 2.

‘We have shown that

ae(Z? < a; € (Z;ei)z fori =1,...,r.

In particular, restricting 6 to (Z})? yields a one-to-one correspondence between
(Z})? and

(Z3e) o x (Z,e0)”,

and therefore, by Theorem 2.26 (and Theorem 2.9), we have

(Z0)? =[] (/2 = pm)/2".

i=1
Now suppose that @ = 82, with 8 € Z* and 0(8) = (1., ..., Br). Consider an
arbitrary element y € Zy, with 8(y) = (y1,....¥r). Then we have
y?=p* = 00> =0(8%)
= f.....v) =B1.....B})
<~ (Y1,...,¥r) = (£P1,...,EPr) (by Theorem 2.25).

Therefore, o has precisely 27 square roots, namely, 0~ (81, ..., £5,).

2.8.4 Square roots of —1 modulo p

Using Euler’s criterion, we can easily characterize those primes modulo which —1
is a quadratic residue. This turns out to have a number of nice applications.

Consider an odd prime p. The following theorem says that the question of
whether —1 is a quadratic residue modulo p is decided by the residue class of
p modulo 4. Since p is odd, either p = 1 (mod 4) or p = 3 (mod 4).
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Theorem 2.31. Let p be an odd prime. Then —1 is a quadratic residue modulo p
if and only p = 1 (mod 4).

Proof. By Euler’s criterion, —1 is a quadratic residue modulo p if and only if
(—1)P=D/2 = 1 (mod p). If p = 1 (mod 4), then (p — 1)/2 is even, and so
(=1)P=D/2 = | If p = 3 (mod 4), then (p —1)/2is odd, and so (—1)?~D/2 =
—-1.0

In fact, when p = 1 (mod 4), any non-square in Z; yields a square root of —1
modulo p, as follows:

Theorem 2.32. Let p be a prime with p = 1 (mod 4), y € Z\ (Z;)z, and
B :=yP=D/4 Then g2 = —1.

Proof. This is a simple calculation, based on Euler’s criterion:
’32 — y(P—l)/Z - 1. 0

The fact that —1 is a quadratic residue modulo primes p = 1 (mod 4) can be
used to prove Fermat’s theorem that such primes may be written as the sum of two
squares. To do this, we first need the following technical lemma:

Theorem 2.33 (Thue’s lemma). Letn, b, r*,t* € Z, with0 < r* <n < r*t*.
Then there exist r,t € Z with

r=bt (modn), |r|l<r*, and 0 <|t| <t*.

Proof. Fori =0,...,r* —land j =0,...,t* — 1, we define the number v;; :=
i —bj. Since we have defined r*¢* numbers, and r*1* > n, two of these numbers
must lie in the same residue class modulo #; that is, for some (i1, j1) # (i2, j2),
we have v;, j, = vj,j, (mod n). Setting r := iy —ip and ¢ := ji — j», this implies
r = bt (mod n), [r| < r*, |t|] < t*, and that either r % 0 or ¢ # 0. It only
remains to show that # # 0. Suppose to the contrary that ¢ = 0. This would imply
that ¥ = 0 (mod n) and r # 0, which is to say that r is a non-zero multiple of #;
however, this is impossible, since |r| < r* <n. O

Theorem 2.34 (Fermat’s two squares theorem). Let p be an odd prime. Then
p =12+ t%forsomer,t € Z ifand only if p = 1 (mod 4).

Proof. One direction is easy. Suppose p = 3 (mod 4). It is easy to see that the
square of every integer is congruent to either O or 1 modulo 4; therefore, the sum of
two squares is congruent to either 0, 1, or 2 modulo 4, and so can not be congruent
to p modulo 4 (let alone equal to p).

For the other direction, suppose p = 1 (mod 4). We know that —1 is a quadratic
residue modulo p, so let b be an integer such that b> = —1 (mod p). Now
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apply Theorem 2.33 with n := p, b as just defined, and r* :=t* := | /p] + .
Evidently, | ./p] + 1 > ,/p, and hence r*t* > p. Also, since p is prime, ,/p is

not an integer, and so | ./p] < /p < p;inparticular, r* = | ,/p|+1 < p. Thus,
the hypotheses of that theorem are satisfied, and therefore, there exist integers r
and ¢ such that

r = bt (mod p), |r| < |[/P] </p. and 0 < [t| < |/P] < /D-
It follows that
r? = b%t? = —t? (mod p).
Thus, 72 + ¢ is a multiple of p and 0 < % +t? < 2p. The only possibility is that
r?+t>=p. 0

The fact that —1 is a quadratic residue modulo an odd prime p only if p =
1 (mod 4) can be used so show there are infinitely many such primes.

Theorem 2.35. There are infinitely many primes p = 1 (mod 4).

Proof. Suppose there were only finitely many such primes, py, ..., px. Set M :=
]—[f-cz1 pi and N := 4M? 4 1. Let p be any prime dividing N. Evidently, p
is not among the p;’s, since if it were, it would divide both N and 4M 2 and so
also N —4M? = 1. Also, p is clearly odd, since N is odd. Moreover, (2M)? =
—1 (mod p); therefore, —1 is a quadratic residue modulo p, andso p = 1 (mod 4),
contradicting the assumption that pq, ..., pg are the only such primes. [

For completeness, we also state the following fact:
Theorem 2.36. There are infinitely many primes p = 3 (mod 4).

Proof. Suppose there were only finitely many such primes, py, ..., pr. Set M :=
]_[f-c=1 piand N := 4M — 1. Since N = 3 (mod 4), there must be some prime
p = 3 (mod 4) dividing N (if all primes dividing N were congruent to 1 modulo 4,
then so too would be their product N). Evidently, p is not among the p;’s, since if
it were, it would divide both N and 4 M, and so also 4M — N = 1. This contradicts
the assumption that py, ..., pr are the only primes congruent to 3 modulo 4. [

EXERCISE 2.33. Let n be a positive integer, let m be an integer, and let d :=
gcd(m, ¢(n)). Show that:

(a) if d =1, then (Z;)" = (Z});
(b) if & € (Z2)", then a®™/4 =1,

EXERCISE 2.34. Calculate the sets C and D in the proof of Theorem 2.21 in the
case p = lland @ = —1.
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EXERCISE 2.35. Calculate the square roots of 1 modulo 4, 8, and 16.

EXERCISE 2.36. Letn € Z with n > 1. Show that n is prime if and only if
(n—1)!'=—1 (mod n).

EXERCISE 2.37. Let p be a prime with p = 1 (mod 4), and b := ((p — 1)/2)".
Show that b> = —1 (mod p).

EXERCISE 2.38. Letn := pq, where p and ¢ are distinct, odd primes. Show that
there exist &, B € Z such thata ¢ (Z})2, B ¢ (Z})?, and aB ¢ (Z})2.

EXERCISE 2.39. Let n be an odd positive integer, and let a be any integer. Show
that a is a quadratic residue modulo » if and only if a is a quadratic residue modulo
p for each prime p | n.

EXERCISE 2.40. Show that if p is an odd prime, with p = 3 (mod 4), then
(Z;)4 = (Z;)Z. More generally, show that if n is an odd positive integer, where
p = 3 (mod 4) for each prime p | n, then (Z})* = (Z})2.

EXERCISE 2.41. Let p be an odd prime, and let e € Z with e > 1. Let a be an
integer of the forma = p/b, where 0 < f < e and p } b. Consider the integer
solutions z to the congruence z2 = a (mod p®). Show that a solution exists if and
only if f is even and b is a quadratic residue modulo p, in which case there are
exactly 2 pf distinct solutions modulo p€.

EXERCISE 2.42. Suppose p is an odd prime, and that r?> + t2 = p for some
integers r, t. Show that if x, y are integers such that x> 4+ y? = p, then (x, y) €
{(£r, £1), (£t, £r)}.

EXERCISE 2.43. Show that if both u and v are the sum of two squares of integers,
then so is their product uv.

EXERCISE 2.44. Suppose r2 +t% = 0 (mod n), where n is a positive integer, and
suppose p is an odd prime dividing n. Show that:

(a) if p divides neither r nor ¢, then p = 1 (mod 4);

(b) if p divides one of r or ¢, then it divides the other, and moreover, p? divides
n,and (r/p)* + (¢/p)*> = 0 (mod n/p?).

EXERCISE 2.45. Let n be a positive integer, and write n = ab? where a and b are
positive integers, and a is square-free (see Exercise 1.15). Show that n is the sum
of two squares of integers if and only if no prime p = 3 (mod 4) divides a. Hint:
use the previous two exercises.
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2.9 Summations over divisors

We close this chapter with a brief treatment of summations over divisors. To this
end, we introduce some terminology and notation. By an arithmetic function,
we simply mean a function from the positive integers into the reals (actually, one
usually considers complex-valued functions as well, but we shall not do so here).
Let f and g be arithmetic functions. The Dirichlet product of f and g, denoted
f * g, is the arithmetic function whose value at n is defined by the formula

(f *Q)n):=>_ f(d)gn/d),
d|n
the sum being over all positive divisors d of n. Another, more symmetric, way to
write this is
(f*m) = Y f(d)g(dy),
n=did>

the sum being over all pairs (d;, d») of positive integers with d1d» = n.

The Dirichlet product is clearly commutative (i.e., f * ¢ = g » f), and is
associative as well, which one can see by checking that

(f*(@xhNm) = Y fld)g(da)h(ds) = ((f * g) » h)(n),

n=d1d>d3

the sum being over all triples (d1, d», d3) of positive integers with dydrds = n.
We now introduce three special arithmetic functions: &, 7, and p. The functions

8 and 1 are defined as follows:

1 ifn=1;

é(n) ::{ 0 ifn> 1 1(n) = 1.

The Mobius function p is defined as follows: if n = pf‘ -+ py’ is the prime
factorization of n, then

0 ife; >1forsomei =1,...,r;
(—1)" otherwise.

in) = {

In other words, u(n) = 0 if n is not square-free (see Exercise 1.15); otherwise,
u(n)is (—1)" where r is the number of distinct primes dividing n. Here are some
examples:

uw) =1, n2) =-1, u(3) =-1, u(4) =0, ud) =-1, pu6) = 1.

It is easy to see from the definitions that for every arithmetic function f, we
have

Sxf=f and (Ix f)n) =) f(d).

din
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Thus, § acts as a multiplicative identity with respect to the Dirichlet product, while
“l x 7 acts as a “‘summation over divisors” operator.

An arithmetic function f is called multiplicative if /(1) = 1 and for all positive
integers n, m with ged(n, m) = 1, we have f(nm) = f(n) f(m).

The reader may easily verify that §, 7, and p are multiplicative functions. The-
orem 2.9 says that Euler’s function ¢ is multiplicative. The reader may also verify
the following:

Theorem 2.37. If f is a multiplicative arithmetic function, and if n = p‘fl e pyr

is the prime factorization of n, then f(n) = f(p}')-- f(pr").
Proof. Exercise. [J

A key property of the M&bius function is the following:

€r

Theorem 2.38. Ler [ be a multiplicative arithmetic function. If n = p‘fl < Dr
is the prime factorization of n, then

dow@d) f(d) = 1= f(p)-- (= f(pr)). (2.9)

dln

Proof. The only non-zero terms appearing in the sum on the left-hand side of (2.9)
are those corresponding to divisors d of the form p;, --- p;,, where p;,, ..., p;, are
distinct; the value contributed to the sum by such a term is (—1)* f( Diy " Diy) =
(=¥ £ ( Diy) -+ f(pi,). These are the same as the terms in the expansion of the
product on the right-hand side of (2.9). OO

If we set f := [ in the previous theorem, then we see that
1 ifn=1;
D wd) = { 0 ifn>1.
dln
Translating this into the language of Dirichlet products, we have
Ixu=24.

Thus, with respect to the Dirichlet product, the functions / and p are multiplicative
inverses of one another. Based on this, we may easily derive the following:

Theorem 2.39 (Mobius inversion formula). Let f and F be arithmetic functions.
Then F =1 x f ifandonlyif f = u* F.

Proof. It F = 1 x f, then
prF=pxUxf)=@uxD)xf=8xf=]
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and conversely, if f = u x F, then
Ix f=1x(uxF)=Uxp)xF=xF=F. O
The Mobius inversion formula says this:
Fn) = Z f(d) for all positive integers n
dln
— f(n)= Z u(d)F(n/d) for all positive integers n.
dln

The Mobius inversion formula is a useful tool. As an application, we use it to
obtain a simple proof of the following fact:

Theorem 2.40. For every positive integer n, we have ) dn®(d) =n.

Proof. Let us define the arithmetic functions N(n) := n and M(n) := 1/n. Our
goal is to show that N = [/ x ¢, and by Mobius inversion, it suffices to show that
uxN=¢.Ifn = pf' -+ py’ is the prime factorization of n, we have

(w* N)(n) =) p(d)nfd) =n) pu(d)/d

din d|n

,
=n l_[(l — 1/pi) (applying Theorem 2.38 with f := M)
i=1

= ¢(n) (by Theorem 2.11). O

EXERCISE 2.46. In our definition of a multiplicative function f, we made the
requirement that f(1) = 1. Show that if we dropped this requirement, the only
other function that would satisfy the definition would be the zero function (i.e., the
function that is everywhere zero).

EXERCISE 2.47. Let f be a polynomial with integer coefficients, and for every
positive integer 7, define wy (n) to be the number of integers x € {0,...,n — 1}
such that f(x) = 0 (mod n). Show that wy is multiplicative.

EXERCISE 2.48. Show that if f and g are multiplicative, then so is f * g. Hint:
use Exercise 1.18.
EXERCISE 2.49. Let t(n) be the number of positive divisors of . Show that:

(a) tis a multiplicative function;

(b) t(n) =[[i=;(ei + 1), where n = pf' -+« py’ is the prime factorization of
n;
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© Ly 1d)n/d) = 1;
(d) X g r(d)r(d) = (=1)", wheren = pi' -+ pr” is the prime factorization
of n.

EXERCISE 2.50. Define o(n) := }_ 4|, d. Show that:
(a) o is a multiplicative function;
(b) o(n) = ]_[;=1(pl.ei+1 —1)/(pi — 1), where n = p}'--- p;" is the prime
factorization of n;
©) g r(d)on/d) = n;
(d) > g r(d)o(d) = (=1)"p1--- pr, where n = pit -+ pi” is the prime

factorization of n.

EXERCISE 2.51. The Mangoldt function A (n) is defined for all positive integers
n as follows: A(n) := log p, if n = p¥ for some prime p and positive integer k,
and A(n) := 0, otherwise. Show that Zd|n A(d) = logn, and from this, deduce
that A(n) = =34, 1(d) logd.

EXERCISE 2.52. Show that if f is multiplicative, and if n = pf' -+ py’ is the
prime factorization of n, then de w(@d)? f(d) =0+ f(p1)--- A+ f(pr).

EXERCISE 2.53. Show that n is square-free if and only if de w(d)?¢(d) = n.

EXERCISE 2.54. Show that for every arithmetic function f with f(1) # 0, there
is a unique arithmetic function g, called the Dirichlet inverse of f, such that
f x g = 6. Also, show that if f(1) = 0, then f has no Dirichlet inverse.

EXERCISE 2.55. Show thatif f is a multiplicative function, then so is its Dirichlet
inverse (as defined in the previous exercise).

EXERCISE 2.56. This exercise develops an alternative proof of Theorem 2.40 that
does not depend on Theorem 2.11. Let n be a positive integer. Define F, :=
{i/neQ:i=0,...,n—1}. Also, for each positive integer d, define G; :=
{a/d €e Q:a € Z,gcd(a,d) = 1}.
(a) Show that for each x € Fy, there exists a unique positive divisor d of n
such that x € G4.

(b) Show that for each positive divisor d of n, we have F,, NGz = {a/d : a €
{0,....,d — 1}, gcd(a,d) = 1}.
(c) Using (a) and (b), show that ) dn (d) =n.

EXERCISE 2.57. Using Mobius inversion, directly derive Theorem 2.11 from The-
orem 2.40.
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Computing with large integers

In this chapter, we review standard asymptotic notation, introduce the formal com-
putational model we shall use throughout the rest of the text, and discuss basic
algorithms for computing with large integers.

3.1 Asymptotic notation

We review some standard notation for relating the rate of growth of functions.
This notation will be useful in discussing the running times of algorithms, and in a
number of other contexts as well.

Let f and g be real-valued functions, both defined either on the set of non-
negative integers, or on the set of non-negative reals. Actually, as we are only
concerned about the behavior of f(x) and g(x) as x — oo, we only require that
f(x) and g(x) are defined for all sufficiently large x. We further assume that g is
eventually positive, meaning that g(x) > 0 for all sufficiently large x. Then

o f = O(g) means that | f(x)| < cg(x) for some positive constant ¢ and all
sufficiently large x (read, “ f is big-O of g”),

e f = Q(g) means that f(x) > cg(x) for some positive constant ¢ and all
sufficiently large x (read, “ f is big-Omega of g”),

e f = O(g) means that cg(x) < f(x) < dg(x) for some positive constants
c and d and all sufficiently large x (read, “ f is big-Theta of g”),

e f = 0(g) means that f(x)/g(x) — 0as x — oo (read, “f is little-o of
g”), and

e f ~ g meansthat f(x)/g(x) — 1 as x — oo (read, “f is asymptotically
equal to g7).

Example 3.1. Let f(x) := x? and g(x) := 2x?> — 10x + 1. Then f = O(g) and
f = Q(g). Indeed, f = O(g). O

49
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Example 3.2. Let f(x) := x? and g(x) := x> —10x + 1. Then f ~ g. O
Example 3.3. Let f(x) := 100x2 and g(x) := x3. Then f = o(g). O

Note that by definition, if we write f = Q(g), f = ©(g), or f ~ g, it must
be the case that f (in addition to g) is eventually positive; however, if we write
f = 0(g)or f =o0(g), then f need not be eventually positive.

When one writes “f = O(g),” one should interpret “- = O(-)” as a binary
relation between f with g. Analogously for “f = Q(g),” “f = ©(g),” and
“f =o0(g)”

One may also write “O(g)” in an expression to denote an anonymous function f
such that f = O(g). Analogously, 2(g), ®(g), and 0(g) may denote anonymous
functions. The expression O(1) denotes a function bounded in absolute value by
a constant, while the expression o(1) denotes a function that tends to zero in the
limit.

Example 3.4. Let f(x) := x3—2x%+x—3. One could write f(x) = x>+ 0(x?).

Here, the anonymous function is g(x) := —2x2+x—3, and clearly g(x) = O(x?).
One could also write f(x) = x3 — (2 + o(1))x2. Here, the anonymous function
is g(x) := —1/x + 3/x%. While g = o(1), it is only defined for x > 0. This

is acceptable, as we will only regard statements such as this asymptotically, as
x —o0. 1

As an even further use (abuse?) of the notation, one may use the big-O, -Omega,
and -Theta notation for functions on an arbitrary domain, in which case the relevant
inequalities should hold throughout the entire domain. This usage includes func-
tions of several independent variables, as well as functions defined on sets with no
natural ordering.

EXERCISE 3.1. Show that:
(@) f =o(g)implies f = O(g) and g # O(f);
(b) f = 0O(g)and g = O(h) implies f = O(h);
(¢) f = 0O(g)and g = o(h) implies f = o(h);
(d) f =o0(g)and g = O(h) implies f = o(h).
EXERCISE 3.2. Let f and g be eventually positive functions. Show that:
(@) f ~gifandonlyif f =1+ o(1))g;
(b) f ~ g implies f = O(g);
(c) f=0(g)ifandonlyif f = O(g) and f = Q(g);
(d) f =Q(g)ifandonlyif g = O(f).



3.1 Asymptotic notation 51

EXERCISE 3.3. Suppose fi = O(g1) and f5 = O(gz). Show that fi + f, =
O(max(g1,g2)), f1 /2 = O(g1g£2), and that for every positive constant ¢, ¢ f; =
0(g1)

EXERCISE 3.4. Suppose that f(x) < ¢ 4+ dg(x) for some positive constants ¢ and
d, and for all sufficiently large x. Show that if g = (1), then f = O(g).

EXERCISE 3.5. Suppose f and g are defined on the integers i > k, and that
g(i) > Oforalli > k. Show that if f = O(g), then there exists a positive
constant ¢ such that | f(i)| < cg(i) foralli > k.

EXERCISE 3.6. Let f and g be eventually positive functions, and suppose
f(x)/g(x) tends to a limit L (possibly . = 00) as x — oo. Show that:

(a) if L = 0, then f = 0(g);
(b) if 0 < L < oo, then f = O(g);
(¢) if L = oo, then g = o(f).

EXERCISE 3.7. Let f(x) := x*(log x)? and g(x) := x? (log x)?, where a, B, y, §
are non-negative constants. Show that if « < y, orif « = y and B < §, then

f=o0(g).

EXERCISE 3.8. Order the following functions in x so that for each adjacent pair
f, g in the ordering, we have f = O(g), and indicate if f = o(g), f ~ g, or
g=0(f):

x3, e*x2, 1/x, x%(x 4 100) + 1/x, x + /x, log, x, logs x, 2x2, x,
e ™™, 2x% — 10x + 4, ex+ﬁ, 2%, 3% x72, x2(log x)1000.

EXERCISE 3.9. Show that:

(a) the relation “~” is an equivalence relation on the set of eventually positive
functions;

(b) for all eventually positive functions f1, f2, g1, g2,1f f1 ~ g1 and f> ~ g,
then f1 x fo ~ g1 * g2, where “x” denotes addition, multiplication, or
division;

(c) for all eventually positive functions f, g, and every o > 0, if f ~ g, then
f*~ g%

(d) for all eventually positive functions f, g, and every function /& such that
h(x) > coasx — oo, if f ~ g, then f o h ~ g o h, where “o” denotes
function composition.

EXERCISE 3.10. Show that all of the claims in the previous exercise also hold
when the relation “~” is replaced with the relation “- = ©®(-).”
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EXERCISE 3.11. Let f, g be eventually positive functions. Show that:
(a) f =0(g)ifandonlyiflog f =logg + O(1);
(b) f ~ gifandonlyiflog f =logg + o(1).

EXERCISE 3.12. Suppose that f and g are functions defined on the integers k, k +
1,..., and that g is eventually positive. For n > k, define F(n) := Y_.'_, f(i)
and G(n) := > 7_; g(i). Show that if f = O(g) and G is eventually positive,
then F = O(G).

EXERCISE 3.13. Suppose that f and g are piece-wise continuous on [a, 00) (see
§A4), and that g is eventually positive. For x > a, define F(x) := |, ax f(t)dt and
G(x) := fax g(t)dt. Show that if f = O(g) and G is eventually positive, then
F = 0(G).

EXERCISE 3.14. Suppose that f and g are functions defined on the integers
k,k + 1,..., both of which are eventually positive. For n > k, define F(n) :=
Yo'k f(G) and G(n) := Y.7_; g(i). Show thatif f ~ g and G(n) — oo as
n — oo, then F ~ G.

EXERCISE 3.15. Suppose that f* and g are piece-wise continuous on [a, c0) (see
§A4), both of which are eventually positive. For x > a, define F(x) := |, ax f@)dt
and G(x) := [ g(t)dt. Show thatif / ~ g and G(x) — oo as x — oo, then
F~G.

EXERCISE 3.16. Give an example of two non-decreasing functions f and g, both
mapping positive integers to positive integers, such that f % O(g) and g # O(f).

3.2 Machine models and complexity theory

When presenting an algorithm, we shall always use a high-level, and somewhat
informal, notation. However, all of our high-level descriptions can be routinely
translated into the machine-language of an actual computer. So that our theorems
on the running times of algorithms have a precise mathematical meaning, we for-
mally define an “idealized” computer: the random access machine or RAM.

A RAM consists of an unbounded sequence of memory cells

m[0],m[1],m[2],...

each of which can store an arbitrary integer, together with a program. A program
consists of a finite sequence of instructions I, /1, . . ., where each instruction is of
one of the following types:

arithmetic This type of instruction is of the form y <— o x B, where » represents
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one of the operations addition, subtraction, multiplication, or integer divi-
sion (i.e., [-/-]). The values « and B are of the form ¢, m[a], or m[mla]],
and y is of the form m[a] or m[m[a]], where c is an integer constant and
a is a non-negative integer constant. Execution of this type of instruction
causes the value o * 8 to be evaluated and then stored in y.

branching This type of instruction is of the form IFae <& 8 GOTO i, where
i is the index of an instruction, and where < is one of the comparison
operations =, #, <, >, <,>_and « and J are as above. Execution of this
type of instruction causes the “flow of control” to pass conditionally to
instruction /;.

halt The HALT instruction halts the execution of the program.

A RAM executes by executing instruction /g, and continues to execute instruc-
tions, following branching instructions as appropriate, until a HALT instruction is
executed.

We do not specify input or output instructions, and instead assume that the input
and output are to be found in memory cells at some prescribed locations, in some
standardized format.

To determine the running time of a program on a given input, we charge 1 unit
of time to each instruction executed.

This model of computation closely resembles a typical modern-day computer,
except that we have abstracted away many annoying details. However, there are
two details of real machines that cannot be ignored; namely, any real machine has
a finite number of memory cells, and each cell can store numbers only in some
fixed range.

The first limitation must be dealt with by either purchasing sufficient memory or
designing more space-efficient algorithms.

The second limitation is especially annoying, as we will want to perform compu-
tations with quite large integers—much larger than will fit into any single memory
cell of an actual machine. To deal with this limitation, we shall represent such large
integers as vectors of digits to some fixed base, so that each digit is bounded so as
to fit into a memory cell. This is discussed in more detail in the next section. The
only other numbers we actually need to store in memory cells are “small” numbers
representing array indices, counters, and the like, which hopefully will fit into the
memory cells of actual machines. Below, we shall make a more precise, formal
restriction on the magnitude of numbers that may be stored in memory cells.

Even with these caveats and restrictions, the running time as we have defined
it for a RAM is still only a rough predictor of performance on an actual machine.
On a real machine, different instructions may take significantly different amounts
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of time to execute; for example, a division instruction may take much longer than
an addition instruction. Also, on a real machine, the behavior of the cache may
significantly affect the time it takes to load or store the operands of an instruction.
Finally, the precise running time of an algorithm given by a high-level description
will depend on the quality of the translation of this algorithm into “machine code.”
However, despite all of these problems, it still turns out that measuring the running
time on a RAM as we propose here is a good “first order” predictor of performance
on real machines in many cases. Also, we shall only state the running time of an
algorithm using a big-O estimate, so that implementation-specific constant factors
are anyway “swept under the rug.”

If we have an algorithm for solving a certain problem, we expect that “larger”
instances of the problem will require more time to solve than “smaller” instances,
and a general goal in the analysis of any algorithm is to estimate the rate of growth
of the running time of the algorithm as a function of the size of its input. For this
purpose, we shall simply measure the size of an input as the number of memory
cells used to represent it. Theoretical computer scientists sometimes equate the no-
tion of “efficient” with “polynomial time” (although not everyone takes theoretical
computer scientists very seriously, especially on this point): a polynomial-time
algorithm is one whose running time on inputs of size n is at most an® + ¢, for
some constants a, b, and ¢ (a “real” theoretical computer scientist will write this
as n9(). Furthermore, we also require that for a polynomial-time algorithm, all
numbers stored in memory are at most a’n " 4 ¢’ in absolute value, for some con-
stants a’, b’, and ¢’. Even for algorithms that are not polynomial time, we shall
insist that after executing ¢ instructions, all numbers stored in memory are at most
a'(n+ t)b/ + ¢’ in absolute value, for some constants a’, b’, and c’.

Note that in defining the notion of polynomial time on a RAM, it is essential
that we restrict the magnitude of numbers that may be stored in the machine’s
memory cells, as we have done above. Without this restriction, a program could
perform arithmetic on huge numbers, being charged just one unit of time for each
arithmetic operation—not only is this intuitively “wrong,” it is possible to come up
with programs that solve some problems using a polynomial number of arithmetic
operations on huge numbers, and these problems cannot otherwise be solved in
polynomial time (see §3.6).

3.3 Basic integer arithmetic

We will need algorithms to manipulate very large integers. Since such integers will
exceed the word-size of actual machines, and to satisfy the formal requirements
of our random access model of computation, we shall represent large integers as
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vectors of digits to some base B, along with a bit indicating the sign. That is, for
a € Z,if we write

k—1
a==%Y aiB' = *(ar_1--aiao)s.
i=0

where 0 < a; < B fori =0,...,k — 1, then a will be represented in memory as
a data structure consisting of the vector of base-B digits ay, ..., ai—_1, along with
a “sign bit” to indicate the sign of a. To ensure a unique representation, if a is
non-zero, then the high-order digit a;_ in this representation should be non-zero.

For our purposes, we shall consider B to be a constant, and moreover, a power of
2. The choice of B as a power of 2 is convenient for a number of technical reasons.

A note to the reader: If you are not interested in the low-level details of algo-
rithms for integer arithmetic, or are willing to take them on faith, you may safely
skip ahead to §3.3.5, where the results of this section are summarized.

We now discuss in detail basic arithmetic algorithms for unsigned (i.e., non-
negative) integers—these algorithms work with vectors of base-B digits, and ex-
cept where explicitly noted, we do not assume the high-order digits of the input
vectors are non-zero, nor do these algorithms ensure that the high-order digit of
the output vector is non-zero. These algorithms can be very easily adapted to deal
with arbitrary signed integers, and to take proper care that the high-order digit of
the vector representing a non-zero number is non-zero (the reader is asked to fill
in these details in some of the exercises below). All of these algorithms can be
implemented directly in a programming language that provides a “built-in” signed
integer type that can represent all integers of absolute value less than B2, and that
provides the basic arithmetic operations (addition, subtraction, multiplication, in-
teger division). So, for example, using the C or Java programming language’s int
type on a typical 32-bit computer, we could take B = 21°. The resulting software
would be reasonably efficient, but certainly not the best possible.

Suppose we have the base-B representations of two unsigned integers @ and b.
We present algorithms to compute the base- B representation of a + b, a —b, a - b,
la/b]|, and @ mod b. To simplify the presentation, for integers x, y with y # 0,
we write QuoRem(x, y) to denote the quotient/remainder pair (|x/y |, x mod y).

3.3.1 Addition

Leta = (ax_1---ao)p and b = (by_q---bo)p be unsigned integers. Assume
that k > £ > 1 (if k < ¢, then we can just swap a and b). The sum ¢ :=
a + b is of the form ¢ = (cgc—1 --- o) p. Using the standard “paper-and-pencil”
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method (adapted from base-10 to base- B, of course), we can compute the base-B
representation of a + b in time O(k), as follows:

carry < 0
fori < 0tof —1do
tmp < a; + b; + carry, (carry,c;) < QuoRem(tmp, B)
fori < £tok —1do
tmp < a; + carry, (carry,cj) < QuoRem(tmp, B)
Cr < carry

Note that in every loop iteration, the value of carry is 0 or 1, and the value tmp
lies between 0 and 2B — 1.

3.3.2 Subtraction

Leta = (ag_1---ao)p and b = (by_; --- bo) g be unsigned integers. Assume that
k > £ > 1. To compute the difference ¢ := a — b, we may use the same algorithm
as above, but with the expression “a; + b;” replaced by “a; — b;”” In every loop
iteration, the value of carry is 0 or —1, and the value of tmp lies between —B and
B — 1. If a > b, then ¢ = 0 (i.e., there is no carry out of the last loop iteration);
otherwise, ¢y = —1 (and b —a = B¥ — (cx_; -+ o), which can be computed
with another execution of the subtraction routine).

3.3.3 Multiplication
Leta = (ag_1---ag)p and b = (by_1 --- bo) p be unsigned integers, with k > 1
and £ > 1. The product ¢ := a - b is of the form (cxy¢—1 - co)B, and may be
computed in time O(kY) as follows:

fori < Otok +£—1doc; < 0
fori <~ Otok —1do
carry < 0
for j <~ 0tof —1do
tmp < ajbj + ci+; + carry
(carry, ci j) < QuoRem(tmp, B)
Citg < carry

Note that at every step in the above algorithm, the value of carry lies between 0
and B — 1, and the value of tmp lies between 0 and BZ — 1.
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3.3.4 Division with remainder
Leta = (ag_1---ao)p and b = (by_; ---bo)p be unsigned integers, with k > 1,
£ > 1,and by_; # 0. We want to compute ¢ and r such that a = bg + r and
0 <r < b. Assume that k > £; otherwise, a < b, and we can just set ¢ < 0 and
r < a. The quotient g will have at most m := k — £ + 1 base-B digits. Write
q = (gm—1--"90)B-
At a high level, the strategy we shall use to compute ¢ and r is the following:

r<a
fori < m — 1 down to 0 do
qi < |r/B'b]

r<—r—Bi-qib

One easily verifies by induction that at the beginning of each loop iteration, we
have 0 < r < B't1p, and hence each q; will be between 0 and B — 1, as required.

Turning the above strategy into a detailed algorithm takes a bit of work. In
particular, we want an easy way to compute |7/ B’bh|. Now, we could in theory
just try all possible choices for g; —this would take time O(BY), and viewing B
as a constant, this is O({). However, this is not really very desirable from either a
practical or theoretical point of view, and we can do much better with just a little
effort.

We shall first consider a special case; namely, the case where £ = 1. In this case,
the computation of the quotient |r/B?b| is facilitated by the following, which
essentially tells us that this quotient is determined by the two high-order digits of
T

Theorem 3.1. Let x and y be integers such that
0<x=x2"+s and 0 <y =y'2"
for some integers n, s, x’, y’, withn > 0and 0 <s <2". Then |x/y]| = |x'/y'].

Proof. We have

/

X N X

x/
y ¥ - yor Tyl
It follows immediately that |x/y ]| > |x'/y’].

We also have

x_x/+s<x/+1< x/+y/—l+1
y - y/ ylzn y/ y/ — y/ y/ y/‘

Thus, we have x/y < [x’'/y’] + 1, and hence, |x/y]| < |x'/y’]. O
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From this theorem, one sees that the following algorithm correctly computes the
quotient and remainder in time O (k) (in the case £ = 1):

r<20
fori < k —1downto0do
tmp <—r- B+ a;
(gi,r) < QuoRem(tmp, by)
output the quotient ¢ = (gx—1 -+ - ¢o) B and the remainder r

Note that in every loop iteration, the value of r lies between 0 and by < B — 1,
and the value of tmp lies between O and B - by + (B — 1) < B — 1.

That takes care of the special case where £ = 1. Now we turn to the general case
£ > 1. In this case, we cannot so easily get the digits ¢; of the quotient, but we can
still fairly easily estimate these digits, using the following:

Theorem 3.2. Let x and y be integers such that
0<x=x2"4+sand 0 <y =y"2" +1¢

for some integers n,s,t,x',y’ withn > 0,0 <s < 2", and 0 <t < 2". Further,
suppose that 2y’ > x/y. Then

Ix/y] < [x'/y'] < |x/y]+2.

Proof. We have x/y < x/y’2", and so [x/y] < |x/y’2"], and by the previous
theorem, |x/y'2" | = |x’/y’|. That proves the first inequality.

For the second inequality, first note that from the definitions, we have x/y >
x"/(y" + 1), which implies x’y — xy’ — x < 0. Further, 2y’ > x/y implies
2yy’ —x > 0. So we have 2yy’ —x > 0 > x’y — xy’ — x, which implies
x/y >x'/y' —2,and hence |x/y] > [x'/y'] —2. 0

Based on this theorem, we first present an algorithm for division with remainder
that works assuming that b is appropriately “normalized,” meaning that by_; >

2w~1 where B = 2¥. This algorithm is shown in Fig. 3.1.
Some remarks are in order:

1. In line 4, we compute g;, which by Theorem 3.2 is greater than or equal to
the true quotient digit, but exceeds this value by at most 2.

2. Inline 5, we reduce g; if it is obviously too big.

3. In lines 6-10, we compute

(rige--1i)B < (rite--1i)B — qib.

In each loop iteration, the value of tmp lies between —(B? — B) and B — 1,
and the value carry lies between —(B — 1) and 0.
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1. fori <~ Otok —1dor < a;

2. I < 0

3. fori < k — £ downto 0do

4. gi < L(riseB +ri4e-1)/bg—1]

5. ifgi > Btheng; < B —1

6. carry < 0

7. for j < 0tof—1do

8. tmp < riyj —q;bj + carry

9. (carry,ri4 ;) < QuoRem(tmp, B)
10. Titg < Tiyg + carry

11. while r; , < 0do

12. carry < 0

13. for j < 0tof —1do

14. tmp <= rit; + b; + carry
15. (carry,ri4 ;) <= QuoRem(tmp, B)
16. Fiyg < Tiyg + carry

17. qgi < qi — 1

18. output the quotient g = (¢x—¢ - qo)B
and the remainder r = (ry_1---70)B

Fig. 3.1. Division with Remainder Algorithm

4. If the estimate g; is too large, this is manifested by a negative value of r; ;¢
at line 10. Lines 11-17 detect and correct this condition: the loop body
here executes at most twice; in lines 12—16, we compute

(rige---1i)B < (rigg---ri)p + (bg—1--bo)B.

Just as in the algorithm in §3.3.1, in every iteration of the loop in lines
13-15, the value of carry is 0 or 1, and the value tmp lies between 0 and
2B —1.

It is quite easy to see that the running time of the above algorithm is O({ - (k —
L+ 1)).

Finally, consider the general case, where » may not be normalized. We multiply
both ¢ and b by an appropriate value 2¥’, with 0 < w’ < w, obtaining a’ :=
a2’ and b’ := 2%, where b’ is normalized; alternatively, we can use a more
efficient, special-purpose “left shift” algorithm to achieve the same effect. We then
compute ¢ and r’ such that ' = b’q + r’, using the above division algorithm
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for the normalized case. Observe that ¢ = |a’/b’| = |a/b], and ¥’ = r2¥’,
where r = a mod b. To recover r, we simply divide r’ by 2%’ which we can do
either using the above “single precision” division algorithm, or by using a special-
purpose “right shift” algorithm. All of this normalizing and denormalizing takes
time O(k + £). Thus, the total running time for division with remainder is still

O -(k—L+1)).

EXERCISE 3.17. Work out the details of algorithms for arithmetic on signed inte-
gers, using the above algorithms for unsigned integers as subroutines. You should
give algorithms for addition, subtraction, multiplication, and division with remain-
der of arbitrary signed integers (for division with remainder, your algorithm should
compute |a/b| and a mod b). Make sure your algorithm correctly computes the
sign bit of the result, and also strips leading zero digits from the result.

EXERCISE 3.18. Work out the details of an algorithm that compares two signed
integers a and b, determining which of a < b, a = b, or a > b holds.

EXERCISE 3.19. Suppose that we run the division with remainder algorithm in
Fig. 3.1 for £ > 1 without normalizing b, but instead, we compute the value ¢; in
line 4 as follows:

qi < [(rizeB® +ri30—1B + rit0—2)/(be—1B + by_3)].

Show that ¢; is either equal to the correct quotient digit, or the correct quotient
digit plus 1. Note that a limitation of this approach is that the numbers involved in
the computation are larger than B2.

EXERCISE 3.20. Work out the details for an algorithm that shifts a given unsigned
integer a to the left by a specified number of bits s (i.e., computes b := a - 2%).
The running time of your algorithm should be linear in the number of digits of the
output.

EXERCISE 3.21. Work out the details for an algorithm that shifts a given unsigned
integer a to the right by a specified number of bits s (i.e., computes b := |a /2% ).
The running time of your algorithm should be linear in the number of digits of
the output. Now modify your algorithm so that it correctly computes |a/2° | for
signed integers a.

EXERCISE 3.22. This exercise is for C/Java programmers. Evaluate the C/Java
expressions

(-17) % 4; (-17) & 3;

and compare these values with (—17) mod 4. Also evaluate the C/Java expressions
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(-17) / 4; (-17) >> 2;
and compare with |—17/4]. Explain your findings.

EXERCISE 3.23. This exercise is also for C/Java programmers. Suppose that
values of type int are stored using a 32-bit 2’s complement representation, and
that all basic arithmetic operations are computed correctly modulo 232, even if
an “overflow” happens to occur. Also assume that double precision floating point
has 53 bits of precision, and that all basic arithmetic operations give a result with
a relative error of at most 27°3. Also assume that conversion from type int to
double is exact, and that conversion from double to int truncates the fractional
part. Now, suppose we are given int variables a, b, and n, such that 1 < n < 239,
0 < a <n,and 0 < b < n. Show that after the following code sequence is
executed, the value of r is equal to (a - b) mod n:
int q;
q = (int) ((((double) a) * ((double) b)) / ((double) n));
r = a*b - qg*n;
if (r >= n)
r=r1r - n;
else if (r < 0)
r =71+ n;

3.3.5 Summary

We now summarize the results of this section. For an integer a, we define its bit
length, or simply, its length, which we denote by len(a), to be the number of bits
in the binary representation of |a|; more precisely,

llog, la|] +1 ifa #0,

len(a) :=1 | ifa = 0.

If len(a) = £, we say that a is an £-bit integer. Notice that if @ is a positive, £-bit
integer, then log, a < £ < log, a + 1, or equivalently, 27! < a < 2¢.

Assuming that arbitrarily large integers are represented as described at the be-
ginning of this section, with a sign bit and a vector of base-B digits, where B is a
constant power of 2, we may state the following theorem.

Theorem 3.3. Let a and b be arbitrary integers.
(i) We can compute a + b in time O(len(a) + len(d)).
(ii) We can compute a - b in time O(len(a) len(b)).
(iii) If b # 0, we can compute the quotient q := |a/b| and the remainder
r := a mod b in time O(len(b) len(q)).
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Note the bound O(len(b)len(g)) in part (iii) of this theorem, which may be
significantly less than the bound O(len(a)len(b)). A good way to remember this
bound is as follows: the time to compute the quotient and remainder is roughly the
same as the time to compute the product bg appearing in the equality a = bg + r.

This theorem does not explicitly refer to the base B in the underlying implemen-
tation. The choice of B affects the values of the implied big-O constants; while in
theory, this is of no significance, it does have a significant impact in practice.

From now on, we shall (for the most part) not worry about the implementation
details of long-integer arithmetic, and will just refer directly this theorem. How-
ever, we will occasionally exploit some trivial aspects of our data structure for
representing large integers. For example, it is clear that in constant time, we can
determine the sign of a given integer a, the bit length of a, and any particular bit of
the binary representation of a; moreover, as discussed in Exercises 3.20 and 3.21,
multiplications and divisions by powers of 2 can be computed in linear time via
“left shifts” and “right shifts.” It is also clear that we can convert between the base-
2 representation of a given integer and our implementation’s internal representation
in linear time (other conversions may take longer—see Exercise 3.32).

We wish to stress the point that efficient algorithms on large integers should
run in time bounded by a polynomial in the bit lengths of the inputs, rather than
their magnitudes. For example, if the input to an algorithm is an £-bit integer n,
and if the algorithm runs in time O(£?), it will easily be able to process 1000-bit
inputs in a reasonable amount of time (a fraction of a second) on typical, modern
computer. However, if the algorithm runs in time, say, O(nl/ 2), this means that
on 1000-bit inputs, it will take roughly 2°°° computing steps, which even on the
fastest computer available today or in the foreseeable future, will still be running
long after our solar system no longer exists.

A note on notation: “len” and “log.” In expressing the running times
of algorithms in terms of an input a, we generally prefer to write len(a)
rather than loga. One reason is esthetic: writing len(a) stresses the fact
that the running time is a function of the bit length of a. Another reason is
technical: for big-O estimates involving functions on an arbitrary domain,
the appropriate inequalities should hold throughout the domain, and for

this reason, it is very inconvenient to use functions, like log, which vanish
or are undefined on some inputs.

EXERCISE 3.24. Leta,b € Z witha > b > 0, and let ¢ := |a/b|. Show that
len(a) —len(b) — 1 < len(q) < len(a) — len(b) + 1.
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EXERCISE 3.25. Letny,...,n; be positive integers. Show that
k

k k
Zlen(nl-) —k < len(l_[ ni) < Zlen(n,-).

EXERCISE 3.26. Show that the product n of integersny, ..., ny, witheachn; > 1,
can be computed in time O(len(n)?).

EXERCISE 3.27. Show that given integers n1, ..., ny, with each n; > 1, and an
integer a, where 0 < @ < n and n := [[; n;, we can compute the k integers
a mod n;, fori =1,...,k, intime O(len(n)?).

EXERCISE 3.28. Show that given integers ny,...,ny, with each n; > 1, we
can compute the k integers n/n;, fori = 1,...,k, where n := []; n;, in time
O(len(n)?).

EXERCISE 3.29. This exercise develops an algorithm to compute | /7 | for a given
positive integer n. Consider the following algorithm:

k < [(len(n) — 1)/2], m < 2k
fori < k — 1 downto 0 do

if (m +29)% <nthenm < m + 2
output m

(a) Show that this algorithm correctly computes | /7.

(b) In a straightforward implementation of this algorithm, each loop itera-
tion takes time O(len(n)?), yielding a total running time of O(len(n)?).
Give a more careful implementation, so that each loop iteration takes time
O(len(n)), yielding a total running time is O(len(n)?).

EXERCISE 3.30. Modify the algorithm given on the previous exercise so that
that given positive integers n and e, with n > 2, it computes Lnl/ €| in time
O(len(n)3/e).

EXERCISE 3.31. An integer n > 1 is called a perfect power if n = ab for
integers a > 1 and » > 1. Using the algorithm from the previous exercise, design
an efficient algorithm that determines if a given n is a perfect power, and if so, also
computes a and b such that n = ab, where a > 1, b > 1, and a is as small as
possible. Your algorithm should run in time O (£3 len(£)), where £ := len(n).

EXERCISE 3.32. Show how to convert (in both directions) between the base-10

representation and our implementation’s internal representation of an integer 7 in
time O (len(n)?).
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3.4 Computing in Z,,
Letn > 1. For every o € Z,, there exists a unique integer a € {0,...,n — 1}
such that & = [a],; we call this integer a the canonical representative of «, and
denote it by rep(«). For computational purposes, we represent elements of Z, by
their canonical representatives.

Addition and subtraction in Z, can be performed in time O(len(n)): given
o, B € Z,, to compute rep(c + ), we simply compute the integer sum rep(«) +
rep(B), subtracting n if the result is greater than or equal to n; similarly, to com-
pute rep(o — 8), we compute the integer difference rep(a) — rep(8), adding n if
the result is negative. Multiplication in Z,, can be performed in time O (len(n)?):
given «, B € Z,, we compute rep(« - ) as rep(«) rep(8) mod n, using one integer
multiplication and one division with remainder.

A note on notation: “rep,” “mod,” and “[-],.”” In describing algorithms,
as well as in other contexts, if «, 8 are elements of Z,,, we may write, for
example, y <— o + B or y < «af}, and it is understood that elements of
Z, are represented by their canonical representatives as discussed above,
and arithmetic on canonical representatives is done modulo n. Thus, we
have in mind a “strongly typed” language for our pseudo-code that makes
a clear distinction between integers in the set {0, ...,n — 1} and elements
of Z,. If a € Z, we can convert a to an object @ € Z, by writing o <«
l[a]n, and if @ € {0,...,n — 1}, this type conversion is purely conceptual,
involving no actual computation. Conversely, if « € Z,, we can convert
« to an objecta € {0,...,n — 1}, by writing a < rep(«); again, this type
conversion is purely conceptual, and involves no actual computation. It
is perhaps also worthwhile to stress the distinction between @ mod n and

[a], —the former denotes an element of the set {0, ...,n — 1}, while the
latter denotes an element of Z,,.

Another interesting problem is exponentiation in Z,: given o € Z, and a non-
negative integer e, compute a¢ € Z,. Perhaps the most obvious way to do this is to
iteratively multiply by « a total of e times, requiring time O(e len(n)?). For small
values of e, this is fine; however, a much faster algorithm, the repeated-squaring
algorithm, computes «® using just O(len(e)) multiplications in Z,, thus taking
time O(len(e) len(n)?).

This method is based on the following observation. Let e = (by_1---bg)2 be
the binary expansion of e (where b is the low-order bit). Fori = 0, ..., ¢, define
e; = |e/2']; the binary expansion of e; is e; = (by_y---b;)2. Also define
Bi i=af fori =0,...,£,s0f; = 1and o = «®. Then we have

ej =2ej+1 +b; and B; = ﬂl-z_H ol fori=0,...,0—1.
This observation yields the following algorithm for computing «¢:

The repeated-squaring algorithm. On input «, e, where & € Z,, and e is a non-
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negative integer, do the following, where e = (by_1 - - - bo)> is the binary expansion
of e:

p < [l
fori < £ — 1 down to 0 do

p <~ B>

ifbj =1thenf < B -«
output 8

It is clear that when this algorithm terminates, we have f = «®, and that the
running-time estimate is as claimed above. Indeed, the algorithm uses £ squarings
in Z,, and at most £ additional multiplications in Z.

Example 3.5. Suppose e = 37 = (100101),. The above algorithm performs the
following operations in this case:

// computed exponent (in binary)

B < [1] /70
B<—pB2B<—pB-a /I

B < B? /10

B <~ B? // 100
B<— B2 B<—pB-a /1001
B <~ B? // 10010

B« B2 B« pB-a /10010
O

The repeated-squaring algorithm has numerous applications. We mention a few
here, but we will see many more later on.

Computing multiplicative inverses in Z,. Suppose we are given a prime p and
an element o € Z;, and we want to compute o~ !. By Euler’s theorem (Theo-
1

, we obtain
1

rem 2.13), we have o”?~! = 1, and multiplying this equation by o~
a?72 = ¢!, Thus, we can use the repeated-squaring algorithm to compute o™
by raising « to the power p —2. This algorithm runs in time O(len(p)?). While this
is a reasonably efficient algorithm, we will develop an even more efficient method
in the next chapter, using Euclid’s algorithm (which also works with any modulus,
not just a prime modulus).

Testing quadratic residuosity. Suppose we are given an odd prime p and an
element a € Zl”;, and we want to test whether o € (Z;)Z. By Euler’s criterion
(Theorem 2.21), we have o € (Z;;)2 if and only if «»~1/2 = 1. Thus, we can
use the repeated-squaring algorithm to test if o € (Z;)2 by raising « to the power
(p — 1)/2. This algorithm runs in time O(len(p)3). While this is a reasonably
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efficient algorithm, we will develop an even more efficient method later in the text
(in Chapter 12).

Testing for primality. Suppose we are given an integer n > 1, and we want
to determine whether n is prime or composite. For large n, searching for prime
factors of n is hopelessly impractical. A better idea is to use Euler’s theorem,
combined with the repeated-squaring algorithm: we know that if n is prime, then
every non-zero a € Z, satisfies «”~! = 1. Conversely, if n is composite, there
exists a non-zero a € Z, such that @”~! # 1 (see Exercise 2.27). This suggests
the following “trial and error” strategy for testing if » is prime:

repeat k times
choose o € Z,, \ {[0]}
compute B < a7}
if B # 1 output “composite” and halt

output “maybe prime”

As stated, this is not a fully specified algorithm: we have to specify the loop-
iteration parameter k, and more importantly, we have to specify a procedure
for choosing « in each loop iteration. One approach might be to just try o =
[1],12], [3], . - . . Another might to be to choose « at random in each loop iteration:
this would be an example of a probabilistic algorithm (a notion we shall discuss
in detail in Chapter 9). In any case, if the algorithm outputs “composite,” we may
conclude that n is composite (even though the algorithm does not find a non-trivial
factor of n). However, if the algorithm completes all k loop iterations and outputs
“maybe prime,” it is not clear what we should conclude: certainly, we have some
reason to suspect that n is prime, but not really a proof; indeed, it may be the case
that n is composite, but we were just unlucky in all of our choices for . Thus,
while this rough idea does not quite give us an effective primality test, it is not a
bad start, and is the basis for several effective primality tests (a couple of which we
shall discuss in detail in Chapters 10 and 21).

EXERCISE 3.33. The repeated-squaring algorithm we have presented here pro-
cesses the bits of the exponent from left to right (i.e., from high order to low or-
der). Develop an algorithm for exponentiation in Z, with similar complexity that
processes the bits of the exponent from right to left.

EXERCISE 3.34. Show that given a prime p, « € Zp, and an integer ¢ > p, we
can compute ¢ in time O (len(e) len(p) + len(p)?3).

The following exercises develop some important efficiency improvements to the
basic repeated-squaring algorithm.
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EXERCISE 3.35. The goal of this exercise is to develop a “2-ary” variant of the
above repeated-squaring algorithm, in which the exponent is effectively treated as
a number in base 2¢, for some parameter ¢, rather than in base 2. Let @ € Z, and
let e be a positive integer of length £. Let us write e in base 2! as e = (e -+ €g)or,
where e; # 0. Consider the following algorithm:

compute a table of values T'[0...2" — 1],
where T[j]:=a/ for j =0,...,2" — 1

B < Tlek]
fori < k — 1 downto 0 do
B B - Tlei]

(a) Show that this algorithm correctly computes «¢, and work out the imple-
mentation details, showing that it may be implemented so as to use at most
¢ squarings and 2! + £/t + O(1) additional multiplications in Z,,.

(b) Show that by appropriately choosing the parameter ¢, we can bound the
number of multiplications in Z, (besides the squarings) by O({/ len({)).
Thus, from an asymptotic point of view, the cost of exponentiation is es-
sentially the cost of about £ squarings in Z,,.

(c) Improve the algorithm so that it only uses at most £ squarings and 2/~ +
£/t + O(1) additional multiplications in Z,. Hint: build a table that con-
tains only the odd powers of & among o®, !, ... a2 1
EXERCISE 3.36. Suppose we are given o1, . .., € Z,, along with non-negative
integers eq, ..., e, where len(e;) < £ fori = 1,...,k. Show how to compute
B = af -~~azk , using at most £ squarings and £ + 2% additional multiplications
in Z,. Your algorithm should work in two phases: the first phase uses only the
values oy, ..., a, and performs at most 2k multiplications in Z,; in the second
phase, the algorithm computes §, using the exponents ey, ..., ¢, along with the
data computed in the first phase, and performs at most £ squarings and £ additional
multiplications in Z,.

EXERCISE 3.37. Suppose that we are to compute «®, where & € Z,, for many
exponents e of length at most £, but with « fixed. Show that for every positive
integer parameter k, we can make a pre-computation (depending on «, £, and k)
that uses at most £ squarings and 2% additional multiplications in Z,, so that after
the pre-computation, we can compute «¢ for every exponent e of length at most £
using at most £/ k + O(1) squarings and £/k + O(1) additional multiplications in
Z,. Hint: use the algorithm in the previous exercise.

EXERCISE 3.38. Suppose we are given o € Z,, along with non-negative integers
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e1,...,er, where len(e;) < £ fori = 1,...,r, and r = O(len(f)). Using the
previous exercise, show how to compute the r values «®!,...,a°", using O({)
multiplications in Z,,.

EXERCISE 3.39. Suppose we are given a € Z,, along with integers m1, ..., m,,
each greater than 1, whose product is m. Also, for i = 1,...,r, define
m} := m/m;. Show how to compute the r values o1, ... ,a™r  using a total

of O(len(r){) multiplications in Z,, where £ := len(n). Hint: divide and con-
quer. Note that if r = O(len(£)), then using the previous exercise, we can do this
using just O(£) multiplications.

EXERCISE 3.40. Let k be a constant, positive integer. Suppose we are given
a1,...,0 € Zy, along with non-negative integers eq, . .., e, where len(e;) < £
fori = 1,...,k. Show how to compute the value o' ---azk, using at most £
squarings and O({/len({)) additional multiplications in Z,,. Hint: develop a 2’-
ary version of the algorithm in Exercise 3.36.

3.5 Faster integer arithmetic (x)

The quadratic-time algorithms presented in §3.3 for integer multiplication and di-
vision are by no means the fastest possible. The next exercise develops a faster
multiplication algorithm.

EXERCISE 3.41. Suppose we have two positive integers a and b, each of length
at most £, such that a = a12k +agand b = b12k + bg, where 0 < ag < 2k and
0<by < 2k Then

ab = a1b12%* + (aphy + a1bo)2* + aob.

Show how to compute the product ab in time O(¥), given the products agbyg, a1 b1,
and (ap — a1)(bo — b1). From this, design a recursive algorithm that computes ab
in time O(¢£!°%23). (Note that log, 3 ~ 1.58.)

The algorithm in the previous is also not the best possible. In fact, it is possible
to multiply two integers of length at most £ on @ RAM in time O({), but we do not
explore this any further here (see §3.6).

The following exercises explore the relationship between integer multiplication
and related problems. We assume that we have an algorithm that multiplies two
integers of length at most £ in time at most M (£). It is convenient (and reasonable)
to assume that M is a well-behaved complexity function. By this, we mean that
M maps positive integers to positive real numbers, such that for some constant
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y > 1, and all positive integers a and b, we have
M(a + b)
S =7
M(a) + M(b)

EXERCISE 3.42. Show that if M is a well-behaved complexity function, then it is
strictly increasing.

EXERCISE 3.43. Show that if N(£) := M (£)/{ is a non-decreasing function, and
ML)/ M) = O(1), then M is a well-behaved complexity function.

EXERCISE 3.44. Leta >0, > 1,y > 0,§ > 0 be real constants. Show that
M) := alP len(£)? len(len(£))®
is a well-behaved complexity function.

EXERCISE 3.45. Show that given integers n > 1 and ¢ > 1, we can compute n¢
in time O (M (len(n¢))).

EXERCISE 3.46. Give an algorithm for Exercise 3.26 that runs in time
O(M(len(n)) len(k)).
Hint: divide and conquer.

EXERCISE 3.47. In the previous exercise, suppose all the inputs n; have the same
length, and that M (¢) = a£?, where o and B are constants with @ > 0 and § > 1.
Show that your algorithm runs in time O(M (len(n))).

EXERCISE 3.48. We can represent a “floating point” number Z as a pair (a, e),
where a and e are integers — the value of Z is the rational number a2¢, and we
call len(a) the precision of Z. We say that Z is a k-bit approximation of a real
number z if 2 has precision k and £ = (1 + €)z for some |e| < 27¥*+1 Show
that given positive integers b and k, we can compute a k-bit approximation of 1/b
in time O(M(k)). Hint: using Newton iteration, show how to go from a ¢-bit
approximation of 1/b to a (2¢ — 2)-bit approximation of 1/b, making use of just
the high-order O(t) bits of b, in time O(M(¢)). Newton iteration is a general
method of iteratively approximating a root of an equation f(x) = 0 by starting
with an initial approximation xg, and computing subsequent approximations by
the formula x;+1 = x; — f(x;)/f(x;), where f’(x) is the derivative of f(x). For
this exercise, apply Newton iteration to the function f(x) = x~1 —b.

EXERCISE 3.49. Using the result of the previous exercise, show that given positive
integers a and b of bit length at most £, we can compute |a/b | and @ mod b in time
O(M(£)). From this, we see that up to a constant factor, division with remainder
is no harder than multiplication.
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EXERCISE 3.50. Using the result of the previous exercise, give an algorithm for
Exercise 3.27 that runs in time O(M (len(n)) len(k)). Hint: divide and conquer.

EXERCISE 3.51. Give an algorithm for Exercise 3.29 that runs in time
O(M(len(n))). Hint: Newton iteration.

EXERCISE 3.52. Suppose we have an algorithm that computes the square of an
£-bit integer in time S(£), where S is a well-behaved complexity function. Show
how to use this algorithm to compute the product of two arbitrary integers of length
at most £ in time O(S({)).

EXERCISE 3.53. Give algorithms for Exercise 3.32 that run in time
O(M(£)len(£)), where £ := len(n). Hint: divide and conquer.

3.6 Notes

Shamir [87] shows how to factor an integer in polynomial time on a RAM, but
where the numbers stored in the memory cells may have exponentially many bits.
As there is no known polynomial-time factoring algorithm on any realistic ma-
chine, Shamir’s algorithm demonstrates the importance of restricting the sizes of
numbers stored in the memory cells of our RAMs to keep our formal model realis-
tic.

The most practical implementations of algorithms for arithmetic on large in-
tegers are written in low-level “assembly language,” specific to a particular ma-
chine’s architecture (e.g., the GNU Multi-Precision library GMP, available at
www . swox . com/gmp). Besides the general fact that such hand-crafted code is more
efficient than that produced by a compiler, there is another, more important reason
for using such code. A typical 32-bit machine often comes with instructions that
allow one to compute the 64-bit product of two 32-bit integers, and similarly, in-
structions to divide a 64-bit integer by a 32-bit integer (obtaining both the quotient
and remainder). However, high-level programming languages do not (as a rule)
provide any access to these low-level instructions. Indeed, we suggested in §3.3
using a value for the base B of about half the word-size of the machine, so as to
avoid overflow. However, if one codes in assembly language, one can take B to
be much closer to, or even equal to, the word-size of the machine. Since our ba-
sic algorithms for multiplication and division run in time quadratic in the number
of base-B digits, the effect of doubling the bit-length of B is to decrease the run-
ning time of these algorithms by a factor of four. This effect, combined with the
improvements one might typically expect from using assembly-language code, can
easily lead to a five- to ten-fold decrease in the running time, compared to an imple-
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mentation in a high-level language. This is, of course, a significant improvement
for those interested in serious “number crunching.”

The “classical,” quadratic-time algorithms presented here for integer multiplica-
tion and division are by no means the best possible: there are algorithms that are
asymptotically faster. We saw this in the algorithm in Exercise 3.41, which was
originally invented by Karatsuba [53] (although Karatsuba is one of two authors
on this paper, the paper gives exclusive credit for this particular result to Karat-
suba). That algorithm allows us to multiply two integers of length at most £ in time
O(£'°223), The fastest known algorithm for multiplying such integers on a RAM
runs in time O({). This algorithm is due to Schonhage, and actually works on a
very restricted type of RAM called a “pointer machine” (see Problem 12, Section
4.3.3 of Knuth [55]). See Exercise 17.26 later in this text for a much simpler (but
heuristic) O(£) multiplication algorithm.

Another model of computation is that of Boolean circuits. In this model of
computation, one considers families of Boolean circuits (with, say, the usual “and,”
“or,” and “not” gates) that compute a particular function—for every input length,
there is a different circuit in the family that computes the function on inputs that
are bit strings of that length. One natural notion of complexity for such circuit
families is the size of the circuit (i.e., the number of gates and wires in the circuit),
which is measured as a function of the input length. For many years, the smallest
known Boolean circuit that multiplies two integers of length at most £ was of size
O(€len(£)len(len(£))). This result was due to Schonhage and Strassen [84]. More
recently, Fiirer showed how to reduce this to O (£ len(€)20(1°g* ) [37]. Here, the
value of log* n is defined as the minimum number of applications of the function
log, to the number 7 to obtain a number that less than or equal to 1. The function
log* is an extremely slow growing function, and is a constant for all practical
purposes.

It is hard to say which model of computation, the RAM or circuits, is “better.”
On the one hand, the RAM very naturally models computers as we know them
today: one stores small numbers, like array indices, counters, and pointers, in indi-
vidual words of the machine, and processing such a number typically takes a single
“machine cycle.” On the other hand, the RAM model, as we formally defined it,
invites a certain kind of “cheating,” as it allows one to stuff O(len(£))-bit integers
into memory cells. For example, even with the simple, quadratic-time algorithms
for integer arithmetic discussed in §3.3, we can choose the base B to have len(¢)
bits, in which case these algorithms would run in time O((¢/len({))?). However,
just to keep things simple, we have chosen to view B as a constant (from a formal,
asymptotic point of view).

In the remainder of this text, unless otherwise specified, we shall always use
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the classical O(£?) bounds for integer multiplication and division, which have the
advantage of being both simple and reasonably reliable predictors of actual perfor-
mance for small to moderately sized inputs. For relatively large numbers, experi-
ence shows that the classical algorithms are definitely not the best— Karatsuba’s
multiplication algorithm, and related algorithms for division, start to perform sig-
nificantly better than the classical algorithms on inputs of a thousand bits or so (the
exact crossover depends on myriad implementation details). The even “faster” al-
gorithms discussed above are typically not interesting unless the numbers involved
are truly huge, of bit length around 10°—10°. Thus, the reader should bear in mind
that for serious computations involving very large numbers, the faster algorithms
are very important, even though this text does not discuss them at great length.
For a good survey of asymptotically fast algorithms for integer arithmetic, see
Chapter 9 of Crandall and Pomerance [30], as well as Chapter 4 of Knuth [55].
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Euclid’s algorithm

In this chapter, we discuss Euclid’s algorithm for computing greatest common di-
visors. It turns out that Euclid’s algorithm has a number of very nice properties,
and has applications far beyond computing greatest common divisors.

4.1 The basic Euclidean algorithm

We consider the following problem: given two non-negative integers a and b, com-
pute their greatest common divisor, gcd(a, b). We can do this using the well-known
Euclidean algorithm, also called Euclid’s algorithm.

The basic idea of Euclid’s algorithm is the following. Without loss of generality,
we may assume that @ > b > 0. If b = 0, then there is nothing to do, since in
this case, gcd(a, 0) = a. Otherwise, if b > 0, we can compute the integer quotient
q := |la/b] and remainder r := a mod b, where 0 < r < b. From the equation

a=bq+r,

it is easy to see that if an integer d divides both b and r, then it also divides a;
likewise, if an integer d divides a and b, then it also divides r. From this obser-
vation, it follows that gcd(a, b) = ged(b, r), and so by performing a division, we
reduce the problem of computing gcd(a, b) to the “smaller” problem of computing
ged(b, r).

The following theorem develops this idea further:

Theorem 4.1. Let a,b be integers, with a > b > 0. Using the division with
remainder property, define the integers ro,ri,...,rgy1, and qi, ..., 4y, where £ >
0, as follows:

73
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a =ro,

b =T,

ro =r141 + 12 (0<ry<ry),
rie1 =Trigi +rig1 (0 <rigr <ri),

rg—2 =Tr¢—19¢—1 +71¢ (0 <rg <rey),
re—1 = reqe (re1 =0).
Note that by definition, £ = 0 if b = 0, and £ > 0, otherwise.
Then we have ry = gcd(a,b). Moreover, if b > 0, then £ < logh/log¢ + 1,
where ¢ := (1 + +/5)/2 ~ 1.62.

Proof. For the first statement, one sees thatfori = 1,...,¢, wehaver;_1 = riq;+
ri+1, from which it follows that the common divisors of r;_; and r; are the same
as the common divisors of ; and r; 4+, and hence ged(r;—1,r;) = ged(ri, ri+1).
From this, it follows that

gcd(a, b) = ged(ro, r1) = ged(rg, re4q1) = ged(rg, 0) = ry.

To prove the second statement, assume that b > 0, and hence £ > 0. If £ = 1, the
statement is obviously true, so assume £ > 1. We claim that fori = 0,...,{ — 1,
we have ry_; > ¢'. The statement will then follow by setting i = £ — 1 and taking
logarithms.

We now prove the above claim. Fori = 0 and i = 1, we have

re>1=¢% and rp_y >rg+1>2> ¢
Fori = 2,...,£ — 1, using induction and applying the fact that $Z = ¢ + 1, we
have
i 2T T 2 ¢ T + ¢ T =921+ ¢) = ¢,
which proves the claim. [
Example 4.1. Suppose a = 100 and » = 35. Then the numbers appearing in
Theorem 4.1 are easily computed as follows:

il ol 1] 2|34
r; | 100 |35 [30 50
qi 2 16
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So we have ged(a,b) =r3 =5. O
We can easily turn the scheme described in Theorem 4.1 into a simple algorithm:

Euclid’s algorithm. On input a, b, where a and b are integers such thata > b > 0,
compute d = ged(a, b) as follows:

r<a,r «<b
while r’ # 0 do
r"” < r mod r’
(r,r"y < (r',r")
d<~r
output d

We now consider the running time of Euclid’s algorithm. Naively, one could
estimate this as follows. Suppose a and b are k-bit numbers. The number of
divisions performed by the algorithm is the number £ in Theorem 4.1, which is
O(k). Moreover, each division involves numbers of k bits or fewer in length, and
so takes time O(k?). This leads to a bound on the running time of O (k3). However,
as the following theorem shows, this cubic running time bound is well off the mark.
Intuitively, this is because the cost of performing a division depends on the length
if the quotient: the larger the quotient, the more expensive the division, but also,
the more progress the algorithm makes towards termination.

Theorem 4.2. Euclid’s algorithm runs in time O(len(a) len(b)).

Proof. We may assume that b > 0. With notation as in Theorem 4.1, the running
time is O(T'), where

¢ 12
T = len(r;)len(g;) <len(b) Y len(q;)

i=1 i=1

L
<len(b) Z(len(ri_l) —len(r;) + 1) (see Exercise 3.24)
i=1
= len(b)(len(rg) — len(ry) + £) (telescoping the sum)
<len(b)(len(a) + logh/log¢ + 1) (by Theorem 4.1)
= O(len(a)len(d)). O

EXERCISE 4.1. With notation as in Theorem 4.1, show that foreachi = 1,...,%,
we have r;4+1 < rj—1/2. Thus, with every fwo division steps, the bit length of the
remainder drops by at least 1. This leads an alternative way to bound the number
of divisions by O(len(b)), but with a larger constant.
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EXERCISE 4.2. Show how to compute lcm(a, b) in time O(len(a) len(b)).

EXERCISE 4.3. Leta,b € Z witha > b > 0, and letd := ged(a, b),a’ :=a/d,
and b’ := b/d. Show that if we run Euclid’s algorithm on input a, b, then

(a) it performs at most logb’/log ¢ + 1 divisions;
(b) its running time is O(len(a’) len(b)).

EXERCISE 4.4. Let £ be a positive integer. Show that there exist integers a, b
witha > b > 0 and £ > logb/log ¢, such that Euclid’s algorithm on input @, b
performs exactly £ divisions. Thus, the bound in Theorem 4.1 on the number of
divisions is essentially tight.

EXERCISE 4.5. This exercise looks at an alternative algorithm for computing
gcd(a, b), called the binary ged algorithm. This algorithm avoids complex opera-
tions, such as division and multiplication; instead, it relies only on subtraction, and
division and multiplication by powers of 2, which assuming a binary representation
of integers (as we are) can be very efficiently implemented using “right shift” and
“left shift” operations. The algorithm takes positive integers @ and b as input, and
runs as follows:
r<a, r < b, e<0
while2 | rand2 | r'dor < r/2, r' < r'/2, e < e+ 1
repeat
while2 | r dor < r/2
while 2 | r" dor’ < r'/2
if r’ < rthen (r,r') < (r',r)
rl<—r'—r

until 7/ = 0
d<«<2¢.r
output d

Show that this algorithm correctly computes ged(a, b), and runs in time O(k?),
where k := max(len(a), len(d)).

4.2 The extended Euclidean algorithm

Let a and b be integers, and let d := gcd(a, b). We know by Theorem 1.8 that
there exist integers s and ¢ such that as + bt = d. The extended Euclidean
algorithm allows us to efficiently compute s and ¢. The following theorem defines
the quantities computed by this algorithm, and states a number of important facts
about them—these will play a crucial role, both in the analysis of the running time
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of the algorithm, as well as in applications of the algorithm that we will discuss
later.

Theorem 4.3. Leta, b, ro, ..., rg41 and q1,...,qq be as in Theorem 4.1. Define

integers sq, ...,S¢y+1 and to, ..., tgy1 as follows:
so =1, to .= 0,
s1:=0, t =1,
Sit1 = Si—1 —Siqi lit1:=ti—1 —tiq; @i=1...,0.
Then
(i) fori =0,...,L + 1, we have as; + bt; = r;; in particular, asy + bt; =
gcd(a, b);
(ii) fori =0,...,4, we have siti 11 — tisi+1 = (—1);
(iii) fori =0,...,L + 1, we have gcd(s;, t;) = 1;
(iv) fori =0,...,4 wehavetitiy1 <0and|t;| < |tix1], fori =1,...,L, we
have s;si+1 < 0 and |s;| < |si+1l;
(v) fori =1,...,£ 4+ 1, we have ri_1|t;| < a and r;i_1|s;| < b;

(vi) ifa > 0, thenfori = 1,...,£ + 1, we have |tj| < a and |s;| < b, ifa > 1
and b > 0, then |ty| < a/2 and |sg| < b/2.

Proof. (i) is easily proved by induction on i. Fori = 0, 1, the statement is clear.
Fori =2,...,£ + 1, we have
asi +bti = a(si—2 — si—19i—1) + b(ti—2 — ti—19i—1)
= (asi—2 + bti—2) — (asi—1 + bti—1)qi—1
=ri—p —ri—1qi—1 (by induction)
=r;.
(ii) is also easily proved by induction on i. For i = 0, the statement is clear. For
i=1,...,£, we have
Siti+1 — lisi+1 = si(ti—1 — tiqi) — ti (si—1 — $iqi)
= —(sj—1t; —ti—15;) (after expanding and simplifying)
= —(=1)'"! (by induction)
= (-1)".
(iii) follows directly from (ii).

For (iv), one can easily prove both statements by induction on i. The statement
involving the #;’s is clearly true for i = 0; fori = 1,...,£, we have t;j4+1 =
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ti—1 — tiq;, and since by the induction hypothesis ¢;_; and ¢; have opposite signs
and |t;| > |t;—1], it follows that |t; 11| = |t;i—1] + |tilgi > |ti|, and that the sign
of #; 1 is the opposite of that of #;. The proof of the statement involving the s;’s is
the same, except that we start the induction ati = 1.

For (v), one considers the two equations:

asi—1 +bti—1 =ri_1,
as; + bt; = r;.

Subtracting ;1 times the second equation from ¢#; times the first, and applying (ii),
we get +a = t;jri—1 — t;—1r;; consequently, using the fact that #; and #;_; have
opposite sign, we obtain

a = |tiri—1 —ti—ri| = |ti|ri—1 + [ti—1|ri = |ti|ri-1.

The inequality involving s; follows similarly, subtracting s;—; times the second
equation from s; times the first.

(vi) follows from (v) and the following observations: if a > 0, then ;1 > 0 for
i=1,....,+1;ifa>1landb > 0,then{ >0andry_; > 2. O

Example 4.2. We continue with Example 4.1. The s;’s and ¢;’s are easily computed
from the ¢;’s:

i O 1] 2| 3 4
ri 1100 {3530 5 0
qi 21 1] 6
S 1 0| 1]-1 7
t O 1]-2] 3|-20

So we have ged(a,b) =5 = —a + 3b. O
We can easily turn the scheme described in Theorem 4.3 into a simple algorithm:

The extended Euclidean algorithm. On input @, b, where a and b are integers
such that @ > b > 0, compute integers d, s, and ¢, such that d = gcd(a, b) and
as + bt = d, as follows:

r<a,r <b
s< 1,5 <0
1 <0t <1
while r’ # 0 do
q<|r/r'], r" < r modr’
(rys,t,r', " ')y < (', s" ', 1", s —s'q,.t —t'q)
d<r
output d, s, ¢
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Theorem 4.4. The extended Euclidean algorithm runs in time
O(len(a) len(b)).

Proof. We may assume that b > 0. It suffices to analyze the cost of computing
the sequences {s;} and {#;}. Consider first the cost of computing all of the #;’s,
which is O(T), where T = Zle len(t;) len(g;). We have t; = 1 and, by part
(vi) of Theorem 4.3, we have |t;| < a fori = 2,...,£{. Arguing as in the proof of
Theorem 4.2, we have

£
T <len(qy) + len(a) Zlen(q,-)
i=2
<len(a) + len(a)(len(ry) — len(rg) + £ — 1) = O(len(a) len(b)).
An analogous argument shows that one can also compute all of the s;’s in time
O(len(a) len(b)), and in fact, in time O(len(b)?). O

For the reader familiar with the basics of the theory of matrices and determinants,
it is instructive to view Theorem 4.3 as follows. Fori = 1,..., £, we have

()= (0 20

Recursively expanding the right-hand side of this equation, we have

Mil=

—

()= ()0 ) 6)

This defines the 2 x 2 matrix M; fori = 1,...,£. If we also define M to be the
2 x 2 identity matrix, then it is easy to see that fori =0, ..., £, we have

M; = ( Sl )
Si+1 lit+1

From these observations, part (i) of Theorem 4.3 is immediate, and part (ii) follows
from the fact that M; is the product of i matrices, each of determinant —1, and the
determinant of M; is evidently s;¢; 41 — ;i +1.

EXERCISE 4.6. In our description of the extended Eulcidean algorithm, we made
the restriction that the inputs a and b satisfy @ > b > 0. Using this restricted
algorithm as a subroutine, give an algorithm that works without any restrictions on
its input.
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EXERCISE 4.7. Assume notation as in Theorem 4.3. Show that for all i =
2,...,¢, wehave |t;| < |tj+1] and r;i_1]ti| < a, and that for all i = 3,...,£, we
have |s;| < |sj+1| and r;—1|s;| < b. Also show that s;z; <O0fori =0,...,¢ + 1.

EXERCISE 4.8. Suppose we modify the extended Euclidean algorithm so that it
computes balanced remainders; that is, fori = 1,..., £, the values g; and r; 4 are
computed so that r;—; = riq; + ri+1 and —|r;|/2 < ri+1 < |r;i|/2. Assume that
the s;’s and the #;’s are computed by the same formula as in Theorem 4.3. Give
a detailed analysis of the running time of this algorithm, which should include an
analysis of the number of division steps, and the sizes of the s;’s and ¢;’s.

EXERCISE 4.9. One can extend the binary gcd algorithm discussed in Exercise 4.5
so that in addition to computing d = gcd(a, b), it also computes s and ¢ such that
as—+bt = d. Here is one way to do this (again, we assume that a and b are positive
integers):

r<a, < b, e« 0
while2 | rand2 | r'dor < r/2, r' < r'/2, e < e+ 1
Gr b<r, s<1,t<0 s <0t <1
repeat
while 2 | r do
r<r/2
if2|sand2 |t then s <« 5/2,¢t <« /2
else s<—(s+l;)/2,t<—(t—d)/2
while 2 | " do
r'<r'/2
if2|s"and2 | ¢/ then 5" < s'/2, t' < t'/2
else s’ < (s’ +b)/2, 1 — (' —a)/2
if " < rthen (r,s,t,r',s", 1"y < (r',s",t',r,5,1)
r—r —r, s~ —s, t—t —t
until ' = 0
d < 2¢-r, outputd, s,t

Show that this algorithm is correct and runs in time O(k?), where k :=
max(len(a), len(b)). In particular, you should verify that all of the divisions by
2 performed by the algorithm yield integer results. Moreover, show that the out-
puts s and ¢ are of length O (k).

4.3 Computing modular inverses and Chinese remaindering

One application of the extended Euclidean algorithm is to the problem of comput-
ing multiplicative inverses in Z,.
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Assume n > 1. Given b € {0,...,n—1}, in time O(len(n)?), we can determine
if b is relatively prime to 7, and if so, compute 5~ mod 7, as follows. We run the
extended Euclidean algorithm on input n, b, obtaining integers d, s, and ¢, such that
d = ged(n,b) and ns + bt = d. If d # 1, then b does not have a multiplicative
inverse modulo n. Otherwise, if d = 1, then ¢ is a multiplicative inverse of b
modulo 7; however, it may not lie in the range {0, ...,n — 1}, as required. By part
(vi) of Theorem 4.3, we have |f| < n/2 < n; therefore, either t € {0,...,n — 1},
ort <Oandt+n €{0,...,n—1}. Thus, b~! mod n is equal to either ¢ or ¢ + n.

We also observe that the Chinese remainder theorem (Theorem 2.6) can be made
computationally effective:

Theorem 4.5 (Effective Chinese remainder theorem). Suppose we are given
k

i=1
prime, and where n;i > 1 and 0 < a; < nj fori = 1,...,k. Letn := H{;l n;.
Then in time O(len(n)?), we can compute the unique integer a satisfying 0 < a <
nanda = a; (mod n;) fori =1,... k.

integers ny, ..., ny and ay, ..., ay, where the family {n; } is pairwise relatively

The algorithm is a straightforward implementation of the proof of Theorem 2.6,
and runs as follows:
n <« ]_[{;1 nj
fori < 1tok do
ny < n/n;, bi < n} modn;, t; < bl._1 mod n;, ej < n}t;
a <« (Zle aje;) mod n

We leave it to the reader to verify the running time bound.

EXERCISE 4.10. In this exercise, you are to make the result of Theorem 2.17 effec-
tive. Suppose that we are given a positive integer n, two elements «, B € Z}, and
integers £ and m, such that «* = B™ and gcd(¢, m) = 1. Show how to compute
y € Z such that @ = y™ in time O(len(£) len(m) + (len(£) + len(m)) len(n)?).

EXERCISE 4.11. In this exercise and the next, you are to analyze an “incremental
Chinese remaindering algorithm.” Consider the following algorithm, which takes
as input integers a1, 11, ds, 12, such that

ged(ny,np) =1, 0<ay <ny, and 0 <ajp < ny.
It outputs integers a, n, such that
n=niny, 0<a<n, a=a; (modny), and a = a, (mod ny),

and runs as follows:
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W <« ”1_1 mod ny, h < (ap —ai;)w mod ny,
a<aj+nih, n < niny
output a, n

Show that the algorithm correctly computes a and n as specified, and runs in time
O(len(n)len(ny)).

EXERCISE 4.12. Using the algorithm in the previous exercise as a subroutine,
give a simple O(len(n)?) algorithm that takes as input integers n1, ...,n; and
ai,...,ay, where the family {n; }f.‘zl is pairwise relatively prime, and where n; >
land 0 < a; < n; fori = 1,...,k, and outputs integers a¢ and n such that
0<a<n,n= ]_[f-czlni, and a = a; (mod n;) fori = 1,...,k. The algorithm
should be “incremental,” in that it processes the pairs (7;, a;) one at a time, using
time O(len(n)len(n;)) to process each such pair.

EXERCISE 4.13. Suppose we are given o1, ...,o, € Z,. Show how to compute
ozl_l, e ,oz,:l by computing one multiplicative inverse modulo 7, and performing
fewer than 3k multiplications modulo 7. This result is useful, as in practice, if n is
several hundred bits long, it may take 10-20 times longer to compute multiplicative

inverses modulo # than to multiply modulo 7.

4.4 Speeding up algorithms via modular computation

An important practical application of the above “computational” version (Theo-
rem 4.5) of the Chinese remainder theorem is a general algorithmic technique that
can significantly speed up certain types of computations involving long integers.
Instead of trying to describe the technique in some general form, we simply illus-
trate the technique by means of a specific example: integer matrix multiplication.

Suppose we have two m x m matrices A and B whose entries are large integers,
and we want to compute the product matrix C := AB. Suppose that for r,s =
1,...,m,the entry of A at row r and column s is a,s, and that for s, = 1,...,m,
the entry of B at row s and column ¢ is bg;. Then for r, ¢ = 1,...,m, the entry
of C at row r and column ¢ is ¢;¢, which is given by the usual rule for matrix
multiplication:

m
Crt = Zarsbst- 4.1
s=1

Suppose further that M is the maximum absolute value of the entries in A and
B, so that the entries in C are bounded in absolute value by M’ := M?m. Let
£ := len(M). To simplify calculations, let us also assume that m < M (this is
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reasonable, as we want to consider large values of M, greater than say 2190, and
certainly, we cannot expect to work with 2100 x 2100 matrices).

By just applying the formula (4.1), we can compute the entries of C using m?>
multiplications of numbers of length at most ¢, and m?> additions of numbers of
length at most len(M"’), where len(M’) < 2{ + len(m) = O(£). This yields a
running time of

O (m3¢?). 4.2)

Using the Chinese remainder theorem, we can actually do much better than this, as
follows.

For every integer n > 1, and forall r,t = 1, ...,m, we have
m
Cri = Zarsbst (mod n). 4.3)
s=1

Moreover, if we compute integers c,., such that

m
., = Zarsbst (mod n) “4.4)
s=1
and if we also have
—n/2<c,, <n/2 and n>2M’, 4.5)
then we must have
Cre = ¢!, (4.6)

To see why (4.6) follows from (4.4) and (4.5), observe that (4.3) and (4.4) imply
that ¢,; = ¢}, (mod n), which means that n divides (¢;; — ¢},). Then from the
bound |¢;¢| < M’ and from (4.5), we obtain

lere — Crgl < lcrel +lerel <M +n/2<n/2+n/2=n.

So we see that the quantity (c¢,; — c,,) is a multiple of n, while at the same time
this quantity is strictly less than n in absolute value; hence, this quantity must be
zero. That proves (4.6).

So from the above discussion, to compute C, it suffices to compute the entries
of C modulo n, where we have to make sure that we compute “balanced” remain-
ders in the interval [—n/2,n/2), rather than the more usual “least non-negative”
remainders.

To compute C modulo 7, we choose a number of small integers 11, . . ., ng, such
that the family {n; }f‘zl is pairwise relatively prime, and the product n := [[;_, n;
is just a bit larger than 2M’. In practice, one would choose the 1;’s to be small
primes, and a table of such primes could easily be computed in advance, so that
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all problems up to a given size could be handled. For example, the product of
all primes of at most 16 bits is a number that has more than 90, 000 bits. Thus,
by simply pre-computing and storing such a table of small primes, we can handle
input matrices with quite large entries (up to about 45, 000 bits).

Let us assume that we have pre-computed appropriate small primes n1, ..., ng.
Further, we shall assume that addition and multiplication modulo each n; can be
done in constant time. This is reasonable from a practical (and theoretical) point
of view, since such primes easily “fit” into a machine word, and we can perform
modular addition and multiplication using a constant number of built-in machine
operations. Finally, we assume that we do not use more #;’s than are necessary, so
that len(n) = O({) and k = O(¥).

To compute C, we execute the following steps:

1. Foreachi = 1,...,k, do the following:

()

(a) compute érls <~ apgmodn; forr,s =1,...,m,
(b) compute 15§’) <« bgy mod n; fors,t =1,...,m,
(c) Forr,t =1,...,m, compute

m
cAflt) «~ Z&gis)b}(? mod 7n;.
s=1

2. For each r,t = 1,...,m, apply the Chinese remainder theorem to
(?S) ég), . ,éflf), obtaining an integer ¢,;, which should be computed as

a balanced remainder modulo 7, so that —n/2 < ¢,y < n/2.
3. Output the matrix C, whose entry in row r and column ¢ is ¢;;.

Note that in step 2, if our Chinese remainder algorithm happens to be imple-
mented to return an integer a with 0 < a < n, we can easily get a balanced
remainder by just subtracting n from a if a > n/2.

The correctness of the above algorithm has already been established. Let us
now analyze its running time. The running time of steps la and 1b is easily seen
to be O(m?¢?). Under our assumption about the cost of arithmetic modulo small
primes, the cost of step 1c is O(m3k), and since k = O({), the cost of this step is
O(m3{). Finally, by Theorem 4.5, the cost of step 2 is O(m?{?). Thus, the total
running time of this algorithm is

O(m?0? + m31).
This is a significant improvement over (4.2); for example, if £ ~ m, then the

running time of the original algorithm is O(m>), while the running time of the
modular algorithm is O (m*).
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EXERCISE 4.14. Apply the ideas above to the problem of computing the product
of two polynomials whose coefficients are large integers. First, determine the run-
ning time of the “obvious” algorithm for multiplying two such polynomials, then
design and analyze a “modular” algorithm.

4.5 An effective version of Fermat’s two squares theorem

We proved in Theorem 2.34 (in §2.8.4) that every prime p = 1 (mod 4) can be
expressed as a sum of two squares of integers. In this section, we make this theorem
computationally effective; that is, we develop an efficient algorithm that takes as
input a prime p = 1 (mod 4), and outputs integers 7 and ¢ such that p = r2 + 2.

One essential ingredient in the proof of Theorem 2.34 was Thue’s lemma (The-
orem 2.33). Thue’s lemma asserts the existence of certain numbers, and we proved
this using the “pigeonhole principle,” which unfortunately does not translate di-
rectly into an efficient algorithm to actually find these numbers. However, we can
show that these numbers arise as a “natural by-product” of the extended Euclidean
algorithm. To make this more precise, let us introduce some notation. For integers
a,b,witha > b > 0, let us define

{+1
EFA(a,b) := {(r,-,s,-,t,-)}izo,
where r;, s;,and t;, fori = 0,...,£ + 1, are defined as in Theorem 4.3.

Theorem 4.6 (Effective Thue’s lemma). Let n,b,r*,t* € Z, with0 < b < n
and 0 < r* < n < r*t*. Further, let EEA(n,b) = {(ri,si,ti)}fil, and let j be
the smallest index (among 0, ..., L + 1) such that rj < r*. Then setting r := r;j
andt := tj, we have

r=bt (modn), 0<r<r* and 0 < |t] <t*.

Proof. Since ro = n > r* > 0 = ry4q, the value of the index j is well defined,
and moreover, j > landrj—1 > r*. It follows that
|tj| <n/rj—1 (by part (v) of Theorem 4.3)
<n/r*
< t* (sincen < r*t*).
Since j > 1, by part (iv) of Theorem 4.3, we have |¢;| > |¢1| > 0. Finally, since
rj =ns; + bt;, we have r; = bt; (mod n). O

What this theorem says is that given n,b,r*,t*, to find the desired values r
and ¢, we run the extended Euclidean algorithm on input n,b. This generates a
sequence of remainders ro > r; > rp > ---, where ro = nand r;y = b. If
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r; is the first remainder in this sequence that falls below r*, and if s; and ; are
the corresponding numbers computed by the extended Euclidean algorithm, then
r:=rjandt :=t; do the job.

The other essential ingredient in the proof of Theorem 2.34 was Theorem 2.31,
which guarantees the existence of a square root of —1 modulo p when p is a prime
congruent to 1 modulo 4. We need an effective version of this result as well. Later,
in Chapter 12, we will study the general problem of computing square roots modulo
primes. Right now, we develop an algorithm for this special case.

Assume we are given a prime p = 1 (mod 4), and we want to compute 8 € Z;
such that 82 = —1. By Theorem 2.32, it suffices to find y € Zy\ (Z;)z, since then
B = )/(1’ —1/4 (which we can efficiently compute via repeated squaring) satisfies
B? = —1. While there is no known efficient, deterministic algorithm to find such
a y, we do know that half the elements of Z; are squares and half are not (see
Theorem 2.20), which suggests the following simple “trial and error” strategy to
compute 3:

repeat
choose y € 7%
compute § « yP~D/4
until BZ = —1
output 8

As an algorithm, this is not fully specified, as we have to specify a procedure
for selecting y in each loop iteration. A reasonable approach is to simply choose
y at random: this would be an example of a probabilistic algorithm, a notion that
we will study in detail in Chapter 9. Let us assume for the moment that this makes
sense from a mathematical and algorithmic point of view, so that with each loop
iteration, we have a 50% chance of picking a “good” y, that is, one in that is not
in (Z;)Z. From this, it follows that with high probability, we should find a “good”
y in just a few loop iterations (the probability that after # loop iterations we still
have not found one is 1/2"), and that the expected number of loop iterations is just
2. The running time of each loop iteration is dominated by the cost of repeated
squaring, which is O(len(p)?3). It follows that the expected running time of this
algorithm (we will make this notion precise in Chapter 9) is O (len(p)3).

Let us now put all the ingredients together to get an algorithm to find r, ¢ such
that p = r? + 2.

1. Find 8 € Z; such that 82 = —1, using the above “trial and error” strategy.
2. Setb < rep(B) (sothat 8 = [b]and b € {0,...,p —1}).

3. Run the extended Euclidean algorithm on input p, b to obtain EEA(p, b),
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and then apply Theorem 4.6 with n := p, b, and r* :=1* := | /p] + 1,
to obtain the values r and ¢.

4. Outputr,¢.

When this algorithm terminates, we have 72 +12 = p, as required: as we argued
in the proof of Theorem 2.34, since r = bt (mod p) and h?> = —1 (mod p), it
follows that r? 4+ t?> = 0 (mod p), and since 0 < r? + 2 < 2p, we must have
r?2 + 1?2 = p. The (expected) running time of step 1 is O(len(p)?). The running
time of step 3 is O(len(p)?) (note that we can compute | /PJ intime O (len( 7)),
using the algorithm in Exercise 3.29). Thus, the total (expected) running time is
O(len(p)?).

Example 4.3. One can check that p := 1009 is prime and p = 1 (mod 4). Let us
express p as a sum of squares using the above algorithm. First, we need to find a
square root of —1 modulo p. Let us just try a random number, say 17, and raise this
to the power (p — 1)/4 = 252. One can calculate that 172°2 = 469 (mod 1009),
and 4692 = —1 (mod 1009). So we were lucky with our first try. Now we run
the extended Euclidean algorithm on input p = 1009 and b = 469, obtaining the
following data:

i I qi Si i

0 | 1009 1 0

1 469 2 0 1

2 71 6 1 -2

3 43 1 -6 13

4 28 1 7 -15

5 15 1 -13 28

6 13 1 20 43

7 2 6 -33 71

8 1 2 218 -469

9 0 -469 1009
The first r; that falls below the threshold r* = [+/1009] + 1 = 32isat j = 4,
and so we set 7 := 28 and ¢ := —15. One verifies that r2 + 2 = 282 + 152 =
1009 = p. O

It is natural to ask whether one can solve this problem without resorting to ran-
domization. The answer is “yes” (see §4.8), but the only known deterministic
algorithms for this problem are quite impractical (albeit polynomial time). This
example illustrates the utility of randomization as an algorithm design technique,
which has proved to be invaluable in solving numerous algorithmic problems in
number theory; indeed, in §3.4 we already mentioned its use in connection with
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primality testing, and we will explore many other applications as well (after putting
the notion of a probabilistic algorithm on firm mathematical ground in Chapter 9).

4.6 Rational reconstruction and applications

In the previous section, we saw how to apply the extended Euclidean algorithm
to obtain an effective version of Thue’s lemma. Now, Thue’s lemma asserts
that for given integers n and b, there exists a pair of integers (r,?) satisfying
r = bt (mod n), and contained in a prescribed rectangle, provided the area of
the rectangle is large enough, relative to n. In this section, we first prove a corre-
sponding uniqueness theorem, under the assumption that the area of the rectangle
is not too large; of course, if r = bt (mod n), then for any non-zero integer ¢, we
also have rq = b(tq), and so we can only hope to guarantee that the ratio r/t is
unique. After proving this uniqueness theorem, we show how to make this theorem
computationally effective, and then develop several very neat applications.
The basic uniqueness statement is as follows:

Theorem 4.7. Letn,b,r*,t* € Z withr* > 0, t* > 0, and n > 2r*t*. Further,
suppose that r,t,r', 1" € Z satisfy

r=bt (modn), |r|<r*, 0<]|t|] <t*, 4.7)
r'=bt' (modn), |F'|<r*, 0<|t/| <t*. 4.8)
Thenr/t =r'/t.
Proof. Consider the two congruences
r = bt (mod n),
r’ = bt' (mod n).
Subtracting ¢ times the second from ¢’ times the first, we obtain
rt’ —r't = 0 (mod n).
However, we also have
[re" —r't] < |r||t’| + |7 ||t] < 2r*t* <n.

Thus, rt’ — r't is a multiple of n, but less than n in absolute value; the only possi-
bility is that r¢’ — r’t = 0, which means r/t = r’/t'. O

Now suppose that we are given n, b, r*,t* € Z as in the above theorem; more-
over, suppose that there exist r, t € Z satisfying (4.7), but that these values are not
given to us. Note that under the hypothesis of Theorem 4.7, Thue’s lemma cannot
be used to guarantee the existence of such r and ¢, but in our eventual applications,
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we will have other reasons to guarantee this. We would like to find 7, ¢’ € Z sat-
isfying (4.8), and if we do this, then by the theorem, we know that r/t = r’/t’.
We call this the rational reconstruction problem. We can solve this problem ef-
ficiently using the extended Euclidean algorithm; indeed, just as in the case of our
effective version of Thue’s lemma, the desired values of 7" and ¢’ appear as “nat-
ural by-products” of that algorithm. To state the result precisely, let us recall the
notation we introduced in the last section: for integers a, b, witha > b > 0, we

defined
{+1
EEA(a,b) = {(ri.si.11)} o
where r;, s;, and t;, fori = 0,....£ + 1, are defined as in Theorem 4.3.

Theorem 4.8 (Rational reconstruction). Let n,b,r* t* € Z with0 < b < n,
0 <r* <n,andt* > 0. Further, suppose that there exist r,s,t € Z such that

r=ns+bt, |r|<r*, and 0 <|t| <t*.

Let EEA(n,b) = {(ri,si,t,')}f:é, and let j be the smallest index (among
0,....¢ + 1) such that r; < r*, and set
r'i=rj, s i=s;, and t' :=1;.

Then we have:

(i) O <|t'| =%

(ii) if n > 2r*t*, then for some non-zero integer ¢,

r=r'q, s=s'q, and t =1t'q.

Proof. Since ro = n > r* > 0 = ry4q, the value of j is well defined, and
moreover, j > 1, and we have the inequalities

0<rj<r*<rj—1, 0<|t|, Ir] <r* and 0 < |t] <1%, (4.9)

along with the identities

ri—1 =nsj—1 + blj_l, (4.10)
rj =ns; + bt;, “4.11)
r =ns + bt. (4.12)

We now turn to part (i) of the theorem. Our goal is to prove that
|tj] <t*. (4.13)
This is the hardest part of the proof. To this end, let

€:=Sjtj_1—Sj—1tj, W= (tj_15s—sj_1t)/€, v = (st —tjs)/€.
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Since € = %1, the numbers p and v are integers; moreover, one may easily verify
that they satisfy the equations

Sji+ Sj—1v =, 4.14)
i+ ti—qv =1, (4.15)
We now use these identities to prove (4.13). We consider three cases:
(i) Suppose v = 0. In this case, (4.15) implies ¢; | ¢, and since ¢ # 0, this
implies |t;| < |t] < t*.

(i1) Suppose puv < 0. In this case, since 7; and ¢;_1 have opposite sign, (4.15)

implies |t] = |tj | + |tj—1v| > |¢j|, and so again, we have |¢;| < || < t*.

(iii) The only remaining possibility is that v # 0 and uv > 0. We argue that

this is impossible. Adding n times (4.14) to b times (4.15), and using the
identities (4.10), (4.11), and (4.12), we obtain

riw +rj—1v =r.

If v # 0 and p and v had the same sign, this would imply that |r| = |r; |+
|[rj—1v] = rj_1, and hence r;_; < |r| < r*; however, this contradicts the
fact that rj_y > r*.

That proves the inequality (4.13). We now turn to the proof part (ii) of the
theorem, which relies critically on this inequality. Assume that

n>2r*t*. (4.16)
From (4.11) and (4.12), we have
rj = bt; (mod n) and r = bt (mod n).

Combining this with the inequalities (4.9), (4.13), and (4.16), we see that the hy-
potheses of Theorem 4.7 are satisfied, and so we may conclude that

rt; —rjt = 0. 4.17)

Subtracting ¢; times (4.12) from ¢ times (4.11), and using the identity (4.17), we
obtain n(st; — s;t) = 0, and hence

st; —sit = 0. (4.18)

From (4.18), we see that ¢; | s;¢, and since ged(s;, ;) = 1, we must have ¢; | 7.

So t = t;q for some ¢, and we must have g # 0 since ¢ # 0. Substituting ¢;¢ for

t in equations (4.17) and (4.18) yields r = r;q and s = s;q. That proves part (ii)
of the theorem. [

In our applications in this text, we shall only directly use part (ii) of this theorem;
however, part (i) has applications as well (see Exercise 4.15).
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4.6.1 Application: recovering fractions from their decimal expansions

It should be a familiar fact to the reader that every real number has a decimal
expansion, and that this decimal expansion is unique, provided one rules out those
expansions that end in an infinite run of 9’s (for example, 1/10 = 0.1000--- =
0.0999.--).

Now suppose that Alice and Bob play a game. Alice thinks of a rational number
z 1= s/t, where s and ¢ are integers with 0 < s < ¢, and tells Bob some of
the high-order digits in the decimal expansion of z. Bob’s goal in the game is to
determine z. Can he do this?

The answer is “yes,” provided Bob knows an upper bound M on ¢, and pro-
vided Alice gives Bob enough digits. Of course, from grade school, Bob probably
remembers that the decimal expansion of z is ultimately periodic, and that given
enough digits of z so as to include the periodic part, he can recover z; however,
this technique is quite useless in practice, as the length of the period can be huge—
®(M) in the worst case (see Exercises 4.18-4.20 below). The method we discuss
here requires only O(len(M)) digits.

Suppose Alice gives Bob the high-order k digits of z. That is, if

z=0.z120z3--- 4.19)

is the decimal expansion of z, then Alice gives Bob zq,...,zx. Now, if 10% is
much smaller than M2, the number z is not even uniquely determined by these
digits, since there are $2(M?) distinct rational numbers of the form s/¢, with 0 <
s <t < M (see Exercise 1.33). However, if 10 > 2M?2, then not only is z
uniquely determined by zp,..., zg, but using Theorem 4.8, Bob can efficiently
compute it.

We shall presently describe efficient algorithms for both Alice and Bob, but
before doing so, we make a few general observations about the decimal expansion
of z. Let e be an arbitrary non-negative integer, and suppose that the decimal
expansion of z is as in (4.19). Observe that

10°2 =21 -+ Ze . Zet1Ze42 " -
It follows that
[10°z] = z1+++2..0. (4.20)
Since z = s/t, if we set r := 10%s mod ¢z, then 10¢s = [10°z |¢ + r, and dividing
this by ¢, we have 10z = [10°z ]| + /¢, where r/t € [0, 1). Therefore,

10¢s mod ¢

; =0.Ze+1Ze+2Ze+3" " 4.21)
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Next, consider Alice. Based on the above discussion, Alice may use the follow-
ing simple, iterative algorithm to compute z1, ..., zk, for arbitrary k > 1, after she
chooses s and ¢:

X1 < S
fori < 1tok do
yi < 10x;
zi < |yi/t]
Xi41 < yi mod ¢
output z1, ..., Zg

Correctness follows from the observation that for each i = 1,2,..., we have
x; = 10~1s mod ¢; therefore, by (4.21) with e = i — 1, we have x;/t =
0.zjzi+1Zi+2--- , and consequently, by (4.20) with ¢ = 1 and x;/¢ in the role
of z, we have | 10x;/t| = z;. Since each loop iteration takes time O(len(M)), the
total time for Alice’s computation is O (k len(M)).

Finally, consider Bob. Given the high-order digits z1, ...,z of z = s/t, along
with the upper bound M on 7, he can compute z as follows:

1. Compute n < 10% and b <« Zf;l z; 10k,

2. Run the extended Euclidean algorithm on input n, b to obtain EEA(n, b),
and then apply Theorem 4.8 with n, b, and r* := t* := M, to obtain the
values r/,s",1’.

3. Output the rational number —s’/1’.

Let us analyze this algorithm, assuming that 10%¥ > 2M2.

For correctness, we must show that z = —s’/t’. To prove this, observe that
by (4.20) with e = k, we have b = |nz| = |ns/t]. Moreover, if we set r :=
ns mod ¢, then we have

r=ns—>bt,0<r<t<r* 0<t<t* andn > 2r*t*.

It follows that the integers s’, ¢’ from Theorem 4.8 satisfy s = s'g and —t = t'g
for some non-zero integer g. Thus, s/t = —s’/t’, as required. As a bonus, since
the extended Euclidean algorithm guarantees that gcd(s’,7’) = 1, not only do we
obtain z, but we obtain z expressed as a fraction in lowest terms.

We leave it to the reader to verify that Bob’s computation may be performed in
time O (k?).

We conclude that both Alice and Bob can successfully play this game with
k chosen so that k = O(len(M)), in which case, their algorithms run in time
O(len(M)?).

Example 4.4. Alice chooses integers s,¢, with 0 < s < ¢ < 1000, and tells Bob
the high-order seven digits in the decimal expansion of z := s/¢, from which
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[ rio qi Si ti
0 | 10000000 1 0
1 7197183 1 1
2 2802817 2 1 -1
3 1591549 1 -2 3
4 1211268 1 3 -4
5 380281 3 -5 7
6 70425 5 18 -25
7 28156 2 -95 132
8 14113 1 208 -289
9 14043 1 -303 421
10 70 200 511 -710
11 43 1 -102503 142421
12 27 1 103014 -143131
13 16 1 -205517 285552
14 11 1 308531 -428683
15 5 2 -514048 714235
16 1 5 1336627 -1857153
17 0 -7197183 10000000

Fig. 4.1. Bob’s data from the extended Euclidean algorithm

Bob should be able to compute z. Suppose s = 511 and ¢+ = 710. Then s/t =
0.7197183098591549 - -. Bob receives the digits 7,1,9,7, 1, 8, 3, and computes
n = 107 and b = 7197183. Running the extended Euclidean algorithm on input
n,b, Bob obtains the data in Fig. 4.1. The first r; that meets the threshold r* =
1000 is at j = 10, and Bob reads off s’ = 511 and ¢’ = —710, from which he
obtains z = —s’/t’ = 511/710.

Another interesting phenomenon to observe in Fig. 4.1 is that the fractions
—s; /t; are very good approximations to the fraction b/n = 7197183/10000000;
indeed, if we compute the error terms b/n + s;/t; fori = 1,...,5, we get (ap-
proximately)

0.72, —0.28, 0.053, —0.03, 0.0054.

Thus, we can approximate the “complicated” fraction 7197183/10000000 by the
“very simple” fraction 5/7, introducing an absolute error of less than 0.006. Exer-
cise 4.15 explores this “data compression” capability of Euclid’s algorithm in more
generality. [
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4.6.2 Application: Chinese remaindering with errors

One interpretation of the Chinese remainder theorem is that if we “encode” an
integer a, with 0 < a < n, as the sequence (ay,...,day), where a; = a mod n;
fori = 1,...,k, then we can efficiently recover a from this encoding. Here, of
course, n = njp ---ny, and the family {n,-}f-;l is pairwise relatively prime.

Suppose that Alice encodes a as (ai,...,ax), and sends this encoding to Bob
over some communication network; however, because the network is not perfect,
during the transmission of the encoding, some (but hopefully not too many) of
the values ay, ..., ay may be corrupted. The question is, can Bob still efficiently
recover the original a from its corrupted encoding?

To make the problem more precise, suppose that the original, correct encoding
ofais (ai,...,ax),and the corrupted encoding is (by, ..., by). Let us define G C
{1,...,k} to be the set of “good” positions i witha; = b;j,and B C {1,...,k} to
be the set of “bad” positions i with a; # b;. We shall assume that | B| < £, where
£ is some specified parameter.

Of course, if Bob hopes to recover a, we need to build some redundancy into
the system; that is, we must require that 0 < a < M for some bound M that is
somewhat smaller than n. Now, if Bob knew the location of bad positions, and if
the product of the n;’s at the good positions exceeds M, then Bob could simply
discard the errors, and reconstruct @ by applying the Chinese remainder theorem
to the a;’s and n;’s at the good positions. However, in general, Bob will not know
a priori the locations of the bad positions, and so this approach will not work.

Despite these apparent difficulties, Theorem 4.8 may be used to solve the prob-
lem quite easily, as follows. Let P be an upper bound on the product of any £ of
the integers n1,...,n; (e.g., we could take P to be the product of the £ largest
numbers among 71, . .., ny). Further, let us assume that n > 2MP2.

Now, suppose Bob obtains the corrupted encoding (b1, ..., by). Here is what
Bob does to recover a:

1. Apply the Chinese remainder theorem, obtaining an integer b, with 0 <
b<nandb = b; (mod n;) fori =1,...,k.

2. Run the extended Euclidean algorithm on input n, b to obtain EEA(n, b),
and then apply Theorem 4.8 with n, b, r* := MP and t* := P, to obtain
values 7/, s, ¢’.

3. If ¢/ | v/, output the integer r’/¢’; otherwise, output “error.”

We claim that the above procedure outputs a, under our assumption that the
set B of bad positions is of size at most £. To see this, let t := [[;,cgni. By
construction, we have 1 <t < P. Also, let r := at, and note that 0 < r < r* and
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0 <t < t*. We claim that
r = bt (mod n). (4.22)

To show that (4.22) holds, it suffices to show that
at = bt (mod n;) 4.23)

foralli = 1,...,k. To show this, for each index i we consider two cases:

Case 1: i € G. In this case, we have a; = b;, and therefore,
at = a;jt = b;jt = bt (mod n;).

Case 2: i € B. In this case, we have n; | t, and therefore,

at =0 = bt (mod n;).

Thus, (4.23) holds for all i = 1,...,k, and so it follows that (4.22) holds. There-
fore, the values r’, ¢’ obtained from Theorem 4.8 satisfy

r r at

One easily checks that both the procedures to encode and decode a value a run in
time O(len(n)?).

The above scheme is an example of an error correcting code, and is actually
the integer analog of a Reed—Solomon code.

Example 4.5. Suppose we want to encode a 1024-bit message as a sequence of 16-
bit blocks, so that the above scheme can correct up to 3 corrupted blocks. Without
any error correction, we could do this with 1024/16 = 64 blocks. However, to
correct this many errors, we need a few extra blocks; in fact, 7 will do.

Of course, a 1024-bit message can naturally be viewed as an integer a in the
set {0,...,2192% _ 1} and the ith 16-bit block in the encoding can be viewed
as an integer a; in the set {0,...,21% — 1}. Setting k := 71, we select k primes,
ni,...,ng,each 16-bits in length. In fact, let us choose 1, ..., ny to be the largest
k primes under 216, If we do this, then the smallest prime among the 7;’s turns out
to be 64717, which is greater than 21598 Wwe may set M := 21024 444 since we
want to correct up to 3 errors, we may set P := 2316 Then with n := [1; ni, we
have

n > 2711598 _ 51134.58 _ 51121 _ 51+1024+6:16 _ 5prp2.

Thus, with these parameter settings, the above scheme will correct up to 3 cor-
rupted blocks. This comes at a cost of increasing the length of the message from
1024 bits to 71 - 16 = 1136 bits, an increase of about 11%. [J
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4.6.3 Applications to symbolic algebra

Rational reconstruction also has a number of applications in symbolic algebra. We
briefly sketch one such application here. Suppose that we want to find the solution
v to the equation

VA = w,

where we are given as input a non-singular square integer matrix A and an in-
teger vector w. The solution vector v will, in general, have rational entries. We
stress that we want to compute the exact solution v, and not some floating point ap-
proximation to it. Now, we could solve for v directly using Gaussian elimination;
however, the intermediate quantities computed by that algorithm would be rational
numbers whose numerators and denominators might get quite large, leading to a
rather lengthy computation (however, it is possible to show that the overall running
time is still polynomial in the input length).

Another approach is to compute a solution vector modulo n, where n is a power
of a prime that does not divide the determinant of A. Provided » is large enough,
one can then recover the solution vector v using rational reconstruction. With this
approach, all of the computations can be carried out using arithmetic on integers
not too much larger than n, leading to a more efficient algorithm. More of the
details of this procedure are developed later, in Exercise 14.18.

EXERCISE 4.15. Let n,b € Z with 0 < b < n, and let EEA(n,b) =
{(ri,sit )}fié This exercise develops some key properties of the fractions —s; /¢;
as approximations to b/n. Fori = 1,..., £ + 1,lete; :==b/n + s;/t;.
(a) Show thate; = r; /tinfori =1,...,¢ + 1.
(b) Show that successive ¢;’s strictly decrease in absolute value, and alternate
in sign.
(c) Show that |¢;| < l/tl.2 fori =1,...,¢,and g4 = 0.
(d) Show that for all s, € Z with ¢t # 0, if |b/n — s/t| < 1/2t2, then
s/t = —s;/t; forsomei = 1,...,£+ 1. Hint: use part (ii) of Theorem 4.8.
(e) Consider a fixed index i € {2,...,£ 4+ 1}. Show that for all 5, € Z,
if 0 < |t] < |t;| and |b/n — s/t| < |€;|, then s/t = —s;/t;. In this
sense, —s; /t; is the unique, best approximation to »/n among all fractions
of denominator at most |#;|. Hint: use part (i) of Theorem 4.8.

EXERCISE 4.16. Using the decimal approximation & ~ 3.141592654, apply Eu-
clid’s algorithm to calculate a rational number of denominator less than 1000 that
is within 1076 of 7. Illustrate the computation with a table as in Fig. 4.1.
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EXERCISE 4.17. Show that given integers s,¢,k, with 0 < s < ¢, and

k > 0, we can compute the kth digit in the decimal expansion of s/t in time
O(len(k) len()?).

For the following exercises, we need a definition: a sequence ¥ = {z;}72,
of elements drawn from some arbitrary set is called (k, £)-periodic for integers
k>0and € > 1ifz; = z;4¢ foralli > k. ¥ is called ultimately periodic if it is
(k, £)-periodic for some (k, £).

EXERCISE 4.18. Show that if a sequence ¥ is ultimately periodic, then it is
(k*, £*)-periodic for some uniquely determined pair (k*, £*) for which the fol-
lowing holds: for every pair (k, £) such that ¥ is (k, £)-periodic, we have k* < k
and £* | £.

The value £* in the above exercise is called the period of ¥, and k* is called the
pre-period of . If its pre-period is zero, then v is called purely periodic.

EXERCISE 4.19. Let z be a real number whose decimal expansion is an ultimately
periodic sequence. Show that z is rational.

EXERCISE 4.20. Let z = s/t € Q, where s and ¢ are relatively prime integers
with 0 < s < t. Show that:

(a) there exist integers k, k' such that 0 < k < k” and s10%F = 510~ (mod ¢t);

(b) for all integers k, k” with 0 < k < k’, the decimal expansion of z is (k, k' —
k)-periodic if and only if s10F = s10%" (mod 1);

(c) if ged(10,¢) = 1, then the decimal expansion of z is purely periodic with
period equal to the multiplicative order of 10 modulo ¢;

(d) more generally, if k is the smallest non-negative integer such that 10 and
t':=t/ gcd(lOk, t) are relatively prime, then the decimal expansion of z is
ultimately periodic with pre-period k and period equal to the multiplicative
order of 10 modulo #’.

A famous conjecture of Artin postulates that for every integer d, not equal to —1
or to the square of an integer, there are infinitely many primes ¢ such that d has
multiplicative order # — 1 modulo ¢. If Artin’s conjecture is true, then by part (c)
of the previous exercise, there are infinitely many primes ¢ such that the decimal
expansion of s/¢, for every s with 0 < s < ¢, is a purely periodic sequence of
period ¢ —1. In light of these observations, the “grade school” method of computing
a fraction from its decimal expansion using the period is hopelessly impractical.
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4.7 The RSA cryptosystem

One of the more exciting uses of number theory in recent decades is its application
to cryptography. In this section, we give a brief overview of the RSA cryptosystem,
named after its inventors Rivest, Shamir, and Adleman. At this point in the text,
we already have the concepts and tools at our disposal necessary to understand the
basic operation of this system, even though a full understanding of the system will
require other ideas that will developed later in the text.

Suppose that Alice wants to send a secret message to Bob over an insecure net-
work. An adversary may be able to eavesdrop on the network, and so sending
the message “in the clear” is not an option. Using older, more traditional crypto-
graphic techniques would require that Alice and Bob share a secret key between
them; however, this creates the problem of securely generating such a shared se-
cret. The RSA cryptosystem is an example of a public key cryptosystem. To use
the system, Bob simply places a “public key” in the equivalent of an electronic
telephone book, while keeping a corresponding “private key” secret. To send a se-
cret message to Bob, Alice obtains Bob’s public key from the telephone book, and
uses this to encrypt her message. Upon receipt of the encrypted message, Bob uses
his private key to decrypt it, obtaining the original message.

Here is how the RSA cryptosystem works. To generate a public key/private key
pair, Bob generates two very large, random primes p and ¢, with p # ¢. To be
secure, p and g should be quite large; in practice, they are chosen to be around 512
bits in length. Efficient algorithms for generating such primes exist, and we shall
discuss them in detail later in the text (that there are sufficiently many primes of a
given bit length will be discussed in Chapter 5; algorithms for generating them will
be discussed at a high level in §9.4, and in greater detail in Chapter 10). Next, Bob
computes n := pq. Bob also selects an integer e > 1 such that gcd(e, ¢p(n)) = 1.
Here, ¢(n) = (p — 1)(¢ — 1). Finally, Bob computes d := ¢~ mod ¢ (n), using
the extended Euclidean algorithm. The public key is the pair (n, ¢), and the private
key is the pair (n,d). The integer e is called the “encryption exponent” and d is
called the “decryption exponent.” In practice, the integers n and d are about 1024
bits in length, while e is usually significantly shorter.

After Bob publishes his public key (n, ¢), Alice may send a secret message to
Bob as follows. Suppose that a message is encoded in some canonical way as
a number between 0 and n — 1 —we can always interpret a bit string of length
less than len(n) as such a number. Thus, we may assume that a message is an
element @ of Z,. To encrypt the message o, Alice simply computes f = «f
using repeated squaring. The encrypted message is f. When Bob receives f, he
computes y := B, and interprets y as a message.

The most basic requirement of any encryption scheme is that decryption should
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“undo” encryption. In this case, this means that for all « € Z,, we should have
@) =a. 4.24)

If « € Zj, then this is clearly the case, since we have ed = 1 + ¢(n)k for some
positive integer k, and hence by Euler’s theorem (Theorem 2.13), we have

(ae)d = o = g1tk _ oWk _

To argue that (4.24) holds in general, let & be an arbitrary element of Z,, and
suppose & = [a],. If a = 0 (mod p), then trivially a®? = 0 (mod p); otherwise,

a4 = gtk = 4. g™k — 4 (mod p),

where the last congruence follows from the fact that ¢ (n)k is a multiple of p — 1,
which is a multiple of the multiplicative order of @ modulo p (again by Euler’s
theorem). Thus, we have shown that a°? = a (mod p). The same arguent shows
that a®? = a (mod q), and these two congruences together imply that ad =
a (mod n). Thus, we have shown that equation (4.24) holds for all « € Z,.

Of course, the interesting question about the RSA cryptosystem is whether or
not it really is secure. Now, if an adversary, given only the public key (7, e),
were able to factor n, then he could easily compute the decryption exponent d
himself using the same algorithm used by Bob. It is widely believed that factoring
n is computationally infeasible, for sufficiently large n, and so this line of attack
is ineffective, barring a breakthrough in factorization algorithms. Indeed, while
trying to factor n by brute-force search is clearly infeasible, there are much faster
algorithms, but even these are not fast enough to pose a serious threat to the security
of the RSA cryptosystem. We shall discuss some of these faster algorithms in some
detail later in the text (in Chapter 15).

Can one break the RSA cryptosystem without factoring n? For example, it is
natural to ask whether one can compute the decryption exponent d without having
to go to the trouble of factoring n. It turns out that the answer to this question is
“no”: if one could compute the decryption exponent d, then ed — 1 would be a
multiple of ¢(n), and as we shall see later in §10.4, given any multiple of ¢ (n),
we can easily factor n. Thus, computing the encryption exponent is equivalent to
factoring n, and so this line of attack is also ineffective. But there still could be
other lines of attack. For example, even if we assume that factoring large numbers
is infeasible, this is not enough to guarantee that for a given encrypted message §3,
the adversary is unable to compute 8¢ (although nobody actually knows how to do
this without first factoring n).

The reader should be warned that the proper notion of security for an encryption
scheme is quite subtle, and a detailed discussion of this is well beyond the scope
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of this text. Indeed, the simple version of RSA presented here suffers from a num-
ber of security problems (because of this, actual implementations of public-key
encryption schemes based on RSA are somewhat more complicated). We mention
one such problem here (others are examined in some of the exercises below). Sup-
pose an eavesdropping adversary knows that Alice will send one of a few, known,
candidate messages. For example, an adversary may know that Alice’s message
is either “let’s meet today” or “let’s meet tomorrow.” In this case, the adversary
can encrypt for himself each of the candidate messages, intercept Alice’s actual
encrypted message, and then by simply comparing encryptions, the adversary can
determine which particular message Alice encrypted. This type of attack works
simply because the encryption algorithm is deterministic, and in fact, any deter-
ministic encryption algorithm will be vulnerable to this type of attack. To avoid
this type of attack, one must use a probabilistic encryption algorithm. In the case
of the RSA cryptosystem, this is often achieved by padding the message with some
random bits before encrypting it (but even this must be done carefully).

EXERCISE 4.21. This exercise develops an algorithm for speeding up RSA de-
cryption. Suppose that we are given two distinct £-bit primes, p and ¢, an element
B € Z,, where n := pq, and an integer d, where 1 < d < ¢(n). Using the algo-
rithm from Exercise 3.35, we can compute 8¢ at a cost of essentially 2¢ squarings
in Z,. Show how this can be improved, making use of the factorization of n, so
that the total cost is essentially that of £ squarings in Z, and £ squarings in Z,
leading to a roughly four-fold speed-up in the running time.

EXERCISE 4.22. Alice submits a bid to an auction, and so that other bidders cannot
see her bid, she encrypts it under the public key of the auction service. Suppose
that the auction service provides a public key for an RSA encryption scheme, with
a modulus n. Assume that bids are encoded simply as integers between 0 and n — 1
prior to encryption. Also, assume that Alice submits a bid that is a “round number,”
which in this case means that her bid is a number that is divisible by 10. Show how
an eavesdropper can submit an encryption of a bid that exceeds Alice’s bid by 10%,
without even knowing what Alice’s bid is. In particular, your attack should work
even if the space of possible bids is very large.

EXERCISE 4.23. To speed up RSA encryption, one may choose a very small en-
cryption exponent. This exercise develops a “small encryption exponent attack”
on RSA. Suppose Bob, Bill, and Betty have RSA public keys with moduli n1, n,,
and n3, and all three use encryption exponent 3. Assume that {ni}?zl is pair-
wise relatively prime. Suppose that Alice sends an encryption of the same mes-
sage to Bob, Bill, and Betty —that is, Alice encodes her message as an integer
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a, with 0 < a < min{n,ns,n3}, and computes the three encrypted messages
Bi = [a®]y;, fori = 1,...,3. Show how to recover Alice’s message from these
three encrypted messages.

EXERCISE 4.24. To speed up RSA decryption, one might choose a small decryp-
tion exponent, and then derive the encryption exponent from this. This exercise
develops a “small decryption exponent attack” on RSA. Suppose n = pq, where
p and ¢ are distinct primes with len(p) = len(g). Let d and e be integers such
that 1 < d < ¢(n), 1 < e < ¢(n), and de = 1 (mod ¢(n)). Further, as-
sume that d < n'/*/3. Show how to efficiently compute d, given 1 and e. Hint:
since ed = 1 (mod ¢ (n)), it follows that ed = 1 + ¢(n)k for an integer k with
0 <k <d;letr :=nk—ed, and show that |r| < n3/4; next, show how to recover
d (along with r and k) using Theorem 4.8.

4.8 Notes

The Euclidean algorithm as we have presented it here is not the fastest known algo-
rithm for computing greatest common divisors. The asymptotically fastest known
algorithm for computing the greatest common divisor of two numbers of bit length
at most £ runs in time O({len({)) on a RAM. This algorithm is due to Schonhage
[83]. The same algorithm leads to Boolean circuits of size O (£ len(£)? len(len(£))),
which using Fiirer’s result [37], can be reduced to O({len(£)? 20(log" ). The
same complexity results also hold for the extended Euclidean algorithm, as well as
for Chinese remaindering, Thue’s lemma, and rational reconstruction.

Experience suggests that such fast algorithms for greatest common divisors are
not of much practical value, unless the integers involved are very large —at least
several tens of thousands of bits in length. The extra “log” factor and the rather
large multiplicative constants seem to slow things down too much.

The binary gcd algorithm (Exercise 4.5) is due to Stein [98]. The extended bi-
nary gcd algorithm (Exercise 4.9) was first described by Knuth [55], who attributes
it to M. Penk. Our formulation of both of these algorithms closely follows that of
Menezes, van Oorschot, and Vanstone [64]. Experience suggests that the binary
gcd algorithm is faster in practice than Euclid’s algorithm.

Schoof [85] presents (among other things) a deterministic, polynomial-time
algorithm that computes a square root of —1 modulo p for any given prime
p = 1 (mod 4). If we use this algorithm in §4.5, we get a deterministic,
polynomial-time algorithm to compute integers r and ¢ such that p = r? + ¢2.

Our Theorem 4.8 is a generalization of one stated in Wang, Guy, and Davenport
[101]. One can generalize Theorem 4.8 using the theory of continued fractions.
With this, one can generalize Exercise 4.15 to deal with rational approximations to
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irrational numbers. More on this can be found, for example, in the book by Hardy
and Wright [45].

The application of Euclid’s algorithm to computing a rational number from the
first digits of its decimal expansion was observed by Blum, Blum, and Shub [17],
where they considered the possibility of using such sequences of digits as a pseudo-
random number generator — the conclusion, of course, is that this is not such a
good idea.

The RSA cryptosystem was invented by Rivest, Shamir, and Adleman [80].
There is a vast literature on cryptography. One starting point is the book by
Menezes, van Oorschot, and Vanstone [64]. The attack in Exercise 4.24 is due
to Wiener [108]; this attack was recently strengthened by Boneh and Durfee [19].
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The distribution of primes

This chapter concerns itself with the question: how many primes are there? In
Chapter 1, we proved that there are infinitely many primes; however, we are inter-
ested in a more quantitative answer to this question; that is, we want to know how
“dense” the prime numbers are.

This chapter has a bit more of an “analytical” flavor than other chapters in this
text. However, we shall not make use of any mathematics beyond that of elemen-
tary calculus.

5.1 Chebyshev’s theorem on the density of primes

The natural way of measuring the density of primes is to count the number of
primes up to a bound x, where x is a real number. For each real number x > 0,
we define 7 (x) to be the number of primes up to (and including) x. For example,
7(l) =0, 7(2) = 1, and 7(7.5) = 4. The function 7 is an example of a “step
function,” that is, a function that changes values only at a discrete set of points. It
might seem more natural to define 7 only on the integers, but it is the tradition to
define it over the real numbers (and there are some technical benefits in doing so).

Let us first take a look at some values of 7(x). Table 5.1 shows values of
m(x) for x = 10¥ and i = 1,...,6. The third column of this table shows the
value of x/m(x) (to five decimal places). One can see that the differences be-
tween successive rows of this third column are roughly the same — about 6.9 —
which suggests that the function x/m(x) grows logarithmically in x. Indeed, as
log(103) ~ 6.9, it would not be unreasonable to guess that x/m(x) ~ logx, or
equivalently, w(x) &~ x/logx. (As discussed in the Preliminaries, log x denotes
the natural logarithm of x.)

The following theorem is a first— and important— step towards making the
above guesswork more rigorous:
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Table 5.1. Some values of w(x)

X w(x) | x/m(x)
103 168 | 5.95238
106 78498 | 12.73918
10° 50847534 | 19.66664

1012 376079