
Asymmetri
 Cryptography with S-BoxesIs it easier than expe
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ient asymmetri
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ques Patarin, Louis GoubinBull PTS , 68 route de Versailles - BP 4578431 Louve
iennes Cedex - Fran
ee-mail : fJ.Patarin,L.Goubing�frlv.bull.frAbstra
tIn [12℄, T. Matsumoto and H. Imai designed an asymmetri
 
ryptosystem, 
alled C�, for authen-ti
ation, en
ryption and signature. This C� s
heme was broken in [13℄ due to unexpe
ted algebrai
properties.In this paper, we study some new \
andidate" asymmetri
 
ryptosystems based on the idea ofhiding one or two rounds of small S-box 
omputations with se
ret fun
tions of degree one or two. Thepubli
 key is given by multivariate polynomials of small degree. The C� s
heme (when its ni valuesare small) 
an be seen as a very spe
ial 
ase of these s
hemes, but in the new s
hemes, the algebrai
properties of [13℄ generally do not exist, so that 
ompletely di�erent 
ryptanalyti
 ideas have tobe found. We study the eÆ
ien
y of 
lassi
al 
ryptanalysis (su
h as di�erential 
ryptanalysis),and we also present 
ompleteley new 
ryptanalyti
 tools (su
h as \gradient 
ryptanalysis"). Withthese 
ryptanalysis, most of the \new" algorithms 
an be broken and we dedu
e some very di�erent
ryptanalysis of C�. Moreover, our 
ryptanalysis and the 
ryptanalysis of [13℄ 
an also be 
ombinedin order to faster 
ompute a 
leartext from a 
iphertext, and to �nd more informations on the se
retkey. Thus one of the interests of the paper is to improve the 
ryptanalysis of C�.However, we were not able to �nd the 
ryptanalysis of all the new s
hemes. More pre
isely, whenone round of se
ret quadrati
 fun
tions is 
ombined with one round of S-boxes, or when two roundsof S-boxes are 
arefully hidden by aÆne fun
tions, the se
urity of these s
hemes is surprisinglystill an open problem. Another interest of the paper lies therefore in the highlighting of these news
hemes. The main pra
ti
al advantage of these s
hemes is that se
ret 
omputations are easy and
an be performed in low-
ost smart
ards.Key words: New asymmetri
 algorithms, multivariate polynomials, di�erential 
ryptanalysis, eÆ-
ient asymmetri
 algorithms for smart
ards.Notes:� This paper is the extended version of the paper with the same title published at ICICS'97.� In this extended version, we have taken into a

ount the re
ent results of [1℄ and [4℄.1 Introdu
tionIn [18℄, Bru
e S
hneier wrote : \Any algorithm that gets its se
urity from the 
omposition of polynomialsover a �nite �eld should be looked upon with skepti
ism, if not outright suspi
ion". Moreover, in thesame page, he also wrote : \Prospe
ts for 
reating radi
ally new and di�erent publi
-key 
ryptographyalgorithms seem dim". Maybe Bru
e S
hneier is right. Nevertheless we will try in this paper to designnew publi
 key 
ryptosystems that get their se
urity... from the 
omposition of polynomials over a�nite �eld ! Moreover, the design of our s
hemes seems to be amazingly simple... However, we mustsay that we have no proof of se
urity for these s
hemes and we will not be sho
ked if these s
hemes arelooked upon with skepti
ism, if not outright suspi
ion.1



We will see that, as expe
ted, the easier s
hemes are not se
ure but for some more 
omplex s
hemes(\two-round s
hemes"), the se
urity is still an open problem.It should be noti
ed that the polynomials in the s
hemes are multivariate polynomials and that Bru
eS
hneier's de
larations were essentially motivated by results on univariate polynomials. The 
omplexityresults may be 
ompletely di�erent for multivariate polynomials. For example, solving a univariatepolynomial equation of small degree d in a �nite �eld is feasible (the 
omplexity is polynomial in d),but solving a multivariate set of polynomial equations of small degree d in a �nite �eld K is NP-hard,even when K = GF (2) and d = 2 (
f [8℄). Or �nding the fun
tional de
omposition of a univariatepolynomial is often easy (see [19℄ and [20℄) but �nding the fun
tional de
omposition of multivariatepolynomials seems to have a 
omplexity exponential in the number of variables, even with the bestknown algorithms (see [5℄ or [6℄ p. 86). Moreover the general problem of 
omputing a multivariatepolynomial de
omposition is NP-hard (see [5℄ or [6℄ p. 87).In fa
t, these hard problems are well known motivations to try to design new asymmetri
 
ryptosystemswith multivariate polynomials. In [7℄ a �rst design idea was studied by Harriet Fell and Whit�eld DiÆebut, as they pointed out, their design was not eÆ
ient be
ause their fun
tion F and its inverse F�1were multivariate polynomials with the same degree d. In [12℄ Tsutomu Matsumoto and Hideki Imaidesigned a very eÆ
ient s
heme (
alled C�) with a fun
tion F of total degree two, su
h that thedegree of F�1 was mu
h larger than two. However this s
heme was broken in [13℄ due to unexpe
tedalgebrai
 properties. In [14℄ another s
heme, 
alled HFE, was designed by Ja
ques Patarin to avoidthese unexpe
ted algebrai
 properties, but the se
ret key 
omputations of HFE are not as eÆ
ient asin the original Matsumoto-Imai s
heme C�.The aim of this paper is to introdu
e and to study \
andidate" s
hemes, whose interest lies in theirvery simple design, and in the very good eÆ
ien
y of the se
ret key 
omputations. More pre
isely,the se
ret key 
omputations will be easy in low-
ost smart
ards be
ause very little RAM is neededand be
ause the number of 
omputations to be performed is very moderate. The main idea of thoses
hemes is to use small S-boxes where some random multivariate fun
tions of small degree are stored,and to 
ombine su
h a fun
tion with some se
ret multivariate fun
tions of small degree. The publi
key is sometimes large, but its length is still polynomial in the length of the messages (moreover, we
an expe
t that se
ret key 
omputations are performed on smart
ards, and publi
 key 
omputationsare performed on personal 
omputers).An important part of the paper deals with the eÆ
ien
y of very di�erent 
ryptanalyti
 ideas on theses
hemes, su
h as di�erential 
ryptanalysis, 
anoni
al representation of multivariate polynomials ofdegree two, or aÆne multiple atta
ks. Moreover we introdu
e some new 
ryptanalyti
 ideas, su
h asfor example what we have 
alled \gradient 
ryptanalysis". A new atta
k on Matsumoto and Imai's C�
ryptosystem is also des
ribed: we will see that it is always possible to \separate" the \bran
hes" ofthe s
heme from ea
h other, whatever their size may be. We will like this be able to re
over more ofthe se
ret key than in [13℄, and to faster 
ompute 
leartexts from 
iphertexts.Although the easier variations of our s
hemes 
an be broken by using those ideas, some of our s
hemesseem to resist 
ryptanalysis so far, and may therefore be interesting 
andidates for new and eÆ
ientasymmetri
 
ryptosystems.
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Part ICryptanalysis of One Round S
hemes2 One round of S-boxes: des
ription of the s
hemesAim of this se
tionIn se
tion 2, we introdu
e the basi
 prin
iples of the new s
hemes we deal with in this paper. Aswe pointed out above, transformations whi
h are based on algebrai
 stru
tures 
an often be used bythe 
ryptanalyst to break the s
heme. That is the reason we will use S-boxes, whi
h are supposedto be built with randomly 
hosen polynomials of small degree, and thus have no algebrai
 stru
ture.Moreover, the design of the s
heme will be su
h that the en
ryption fun
tion is polynomial with a smalldegree (typi
ally 2 or 4), but its inverse is polynomial with a high degree, and so 
annot be found byGaussian redu
tions.Se
tion 2 is about the simplest way of using these ideas: there will be only one round of S-boxes, hiddenby two aÆne bije
tive transformations. However, we will see (in se
tion 3) that this �rst s
heme is notse
ure, whatever the degree of the S-boxes may be.Des
ription of the s
hemesA �nite �eld K, with q = pm elements is publi
. For example, we may take K = GF (2), the �nite �eldwith two elements.Ea
h message will be represented by n elements of GF (q), where n is another publi
 integer. n is splitinto d integers n1; :::; nd, su
h that n = n1 + :::+ nd. For ea
h e, 1 � e � d, we have a S-box Se whi
hmaps Kne into Kne , and is given by quadrati
 polynomials of the ne variables.The se
ret items will be:1. Two aÆne bije
tions s and t from Kn to Kn.2. The separation of n into d integers: n = n1 + :::+ nd.3. The S-boxes: S1; :::; Sd.Let x = (x1; :::; xn) be the 
leartext, and y = (y1; :::; yn) be the 
orresponding 
iphertext. If we havethe se
rets, then we 
an obtain y from x as follows (we will see below how to obtain y from x withoutthe se
rets):1. x = (x1; :::; xn) is �rst transformed with the aÆne se
ret permutation s into s(x) = a = (a1; :::; an).2. Then we 
ompute8<: (b1; :::; bn1 ) = S1(a1; :::; an1)::::::::::::::::::::(bn1+:::+nd�1+1; :::; bn1+:::+nd) = Sd(an1+:::+nd�1+1; :::; an1+:::+nd)where for ea
h e, 1 � e � d, Se is the se
ret quadrati
 S-box whi
h maps Kne into Kne .3. Finally, b = (b1; :::; bn) is transformed with another aÆne se
ret permutation t, into t(b) = y =(y1; :::; yn).It is easy to see that the 
omposition of all these operations is still a quadrati
 fun
tion of the 
omponentsof x, so that it 
an be given by n polynomials of degree two in x1; :::; xn. Ea
h S-box 
an be seen as a\bran
h" of the algorithm.The publi
 items are:1. The �eld K and the length n of the messages.2. The n polynomials P1,...,Pn in n variables over K.3



So anyone 
an en
ipher a message (be
ause from P1; :::; Pn, anyone 
an obtain y from x).Moreover, if the se
ret items are known, a message 
an be de
iphered like this:1. From y = (y1; :::; yn), we 
ompute b = (b1; :::; bn) = t�1(y1; :::; yn).2. Then we 
an �nd (a1; :::; an) by looking in a table in whi
h all the values of the S-box fun
tionshave been pre
omputed and sorted in lexi
ographi
 order.3. Finally, we 
ompute x = (x1; :::; xn) = s�1(a1; :::; an).Note 1: The parameters must be 
hosen so that the tables for the S-boxes are not too large. Forexample, we 
an take K = GF (2), n = 64 and n1 = ::: = n8 = 8, so that ea
h table 
ontains 28 = 256values.Note 2: The S-boxes are not ne
essarily one-to-one maps. So there may be several possible 
leartextsfor a given 
iphertext. One solution to avoid this ambiguity is to put some redundan
y in the repre-sentation of the messages, by making use of an error 
orre
ting 
ode or a hash fun
tion (for details, see[14℄ p. 34, where a similar idea is used in a di�erent s
heme).Note 3: The s
heme 
an also be used in signature. To sign a messageM , the basi
 idea is to 
omputex from y = h(RjjM) (as if we were de
iphering a message), where h is a hash fun
tion and R is a smallpad. If we su

eed, (x;R) will be the signature of M . If we do not su

eed (be
ause the fun
tion isnot a bije
tion), we try another pad R (for variants and details, see [14℄, where a similar idea is used).It 
ould also be noti
ed that, with the variation des
ribed below (with some quadrati
 fun
tions q1, ...,qd), we will have a larger probability to su
eed (i.e. we will have to try fewer values R).Note 4: We said that the S-box 
an be inverted by looking in a table. More pre
isely, we alwayshave three di�erent ways to invert a S-box:1. Looking in a table.2. Trying all the possible inputs in order to �nd the right ones (\exhaustive sear
h").3. Solving the polynomial equations of the S-box. Sin
e the S-box uses only a very small number ofvariables, these equations 
an often be inverted by algebrai
 algorithms (whi
h are not eÆ
ientwith more variables).Note 5: The C� s
heme of T. Matsumoto and H. Imai 
an be seen as a very spe
ial 
ase of ouralgorithm above, when, in C�, all the ni variables are small (see [12℄ for the de�nition of C� and of theni variables). Therefore, the atta
ks of the next three se
tions 
an be applied against C� with small niparameters, so that we obtain a di�erent 
ryptanalysis of that s
heme. Moreover, this new 
ryptanalysisis based on the fa
t that the ni's are small, and not on algebrai
 properties of the tranformations, su
has in the general 
ryptanalysis of [13℄.Variation 1 (General S-boxes s
heme): The output of the Si box (2 � i � d) 
an also beXORed with a quadrati
 fun
tion qi of the variables (a1; a2; :::; an1+:::+ni�1) before performing the tpermutation, as shown in �gure 1 below. The publi
 key is still a quadrati
 fun
tion of the xj variables,1 � j � n, and the de
ryption will be done �rst on S1 (it gives a1, ..., an�1), then on S2, ..., and�nally on Sd (i.e. from the left to the right S-boxes). As mentioned in note 3, this variation may havepra
ti
al advantages in signature. However, the 
ryptanalysis of this generalisation will be exa
tly thesame as if q2 = ::: = qd = 0.Variation 2 (Triangular system ex
ept one S-box at the beginning): In �gure 2, we have a\triangular system ex
ept one S-box at the beginning". This variation is \almost" a permutation, so itmay have some pra
ti
al advantages. However, this variation 
an be broken as the general one rounds
heme. 4



as : se
ret aÆne permutationx : 
leartext
a1 an1 an1+1 an1+n2 SdS2S1 qd(a1; :::; an�nd)�q2(a1; :::; an1)� bt : se
ret aÆne permutationy : 
iphertext

Figure 1: One round of triangular S-boxes (it gives a weak s
heme)
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as : se
ret aÆne permutationx : 
leartext
an qn�k(a1; :::; an�1)�ak+2q2(a1; :::; ak+1)�ak+1q1(a1; :::; ak)�a1 akS1

bt : se
ret aÆne permutationy : 
iphertext
Figure 2: One round of \one S-box followed by a triangular 
onstru
tion" (it gives a weak s
heme)
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3 One round of S-boxes: Cryptanalysis of the s
hemes3.1 The Degeneration Problem (DP)As we will see below, the 
ryptanalysis of the one-round s
hemes is related to the following problem,that we 
all the \Degeneration Problem" (DP):Given: A multivariate quadrati
 equation y = P (x1; :::; xn), where P is of degree two, with nvariables x1, ..., xn.Problem: Find a 
hange of variables of degree one, from the n variables xi to (at most) n � 1variables x01, ..., x0n�1 (i.e. 8i, 1 � i � n, xi = P 0i (x01; :::; x0n�1), where P 0i is of total degree one), and�nd a polynomial Q of total degree two in (at most) n� 1 variables, su
h that: y = Q(x01; :::; x0n�1).As we will see, there are some algorithms with polynomial 
omplexity for this DP problem, and fromthem a 
ryptanalysis of the one-round s
heme 
an be found.Remark: However, it 
an be noti
ed that we did not �nd an algorithm with polynomial 
omplexityfor the following more general problem, that we 
all the \Linear Combination Degeneration Problem(LCDP)":Given: A set of k multivariate quadrati
 equations yi = Pi(x1; :::; xn), where Pi is of degree two.Problem: Find a linear 
ombination y = kPi=1�iyi su
h that, for this linear 
ombination y, the DPproblem has a solution.3.2 First atta
k: 
anoni
al 
ryptanalysisIn se
tion 3.2, we present an atta
k based on the existen
e of a 
anoni
al representation of the quadrati
polynomials involved in the s
heme. Let us re
all the 
lassi
al theorem about the representation ofquadrati
 forms over a �eld with even 
hara
teristi
.De�nitions:1. A quadrati
 form over K is a homogeneous polynomial in K[X1; :::;Xn℄ of degree two, or the zeropolynomial.2. Two polynomials f and g of degree � 2 over K, are said to be equivalent if f 
an be transformedinto g by means of a nonsingular linear substitution of the indeterminates.3. A quadrati
 form f in n indeterminates is 
alled nondegenerate if it is not equivalent to a quadrati
form in fewer than n indeterminates.Theorem 3.1 Let f 2 K[X1; :::;Xn℄ be a nondegenerate quadrati
 form over K = GF (q), where q iseven. If n is odd, then f is equivalent to:x1x2 + x3x4 + :::+ xn�2xn�1 + x2n: (1)If n is even, then f is either equivalent to:x1x2 + x3x4 + :::+ xn�1xn (2)or to a quadrati
 form of the type:x1x2 + x3x4 + :::+ xn�1xn + x2n�1 + ax2n (3)where a 2 K. 7



A proof of this theorem is given in [11℄. Moreover, if f is given, then the transformation of f in (1),(2) or (3) is very easy.The algorithm used in the proof 
an also be applied to a degenerate quadrati
 form, in the same way.For su
h a form f , we 
an de�ne the \number of independent variables of f" as the smallest integer ksu
h that f is equivalent to a quadrati
 form in k indeterminates. Following the algorithm given in theproof of the theorem, we 
an see that this number k is also very easy to 
ompute.Using these tools, we 
an now derive a method to \separate" the S-boxes in the s
heme. We use thenotations of se
tion 2.Des
ription of the algorithm:1. Generate randomly n bits �1; :::; �n, and 
ompute:y0 = nXi=1 �iPi(X1; :::;Xn);whi
h is a polynomial of degree two in X1; :::;Xn.2. Compute the number k of independent variables of y0, and write y0 as a polynomial of degree twoin x01; :::; x0k, where the x0i have an aÆne expression in the xj (1 � j � n).The probability that y0 has no 
omponents in bran
h number one, i.e. the probability that y0 has alinear expression in bn1+1; :::; bn1+:::+nd is 1qn1 .So by repeating steps 1 and 2 about �qn1 times, we will generate about � equations y01; :::; y0� su
hthat these equations have no 
omponents in bran
h number one. Moreover, when this o

urs, thenk � n� n1, and when this does not o

ur, then the probability that k � n� n1 is very small, ex
ept ifthere are di�erent bran
hes with about n1 variables. However, it is very easy to see if two polynomialsy01 and y02 with k � n�n1 have no 
omponents from the same bran
h: we write y01 in x01; :::; x0k1 and y02in x001; :::; x00k2 , and we see how many terms are linearly independent in x01; :::; x0k1 ; x001 ; :::; x00k2 . If there aremore than n�n1 independent terms, then y01 or y02 has 
omponents from the �rst bran
h. And if thereare less than n� n1 independent terms, then we 
an write y01 and y02 as polynomials of degree two inx0001 ; :::; x000n�n1 , where the x000i have aÆne expressions in the xj (1 � j � n).Note: Another idea would be to 
ompute the number k of independent variables of y01 + y02 and testif k � n� n1.Finally, after O(qn1) 
omputations, we will �nd n � n1 independent equations y01; :::; y0n�n1 su
h thatthese equations have no 
omponents 
oming from the �rst S-box, and we will be able to write all theseequations as polynomials of degree two in x01; :::; x0n�n1 , where the x0i have aÆne expressions in the xj(1 � j � n).So with these new variables x0i and y0i, we have eliminated the variables of the �rst bran
h. Applyingthis algorithm d times, we 
an \separate" the S-boxes from ea
h other and then the s
heme is veryeasy to break by simple exhaustive sear
h on the 
leartext for ea
h S-box.3.3 Se
ond atta
k: di�erential 
ryptanalysisWe will now des
ribe another very di�erent atta
k, that also works very well against s
hemes withsmall bran
hes. Let F = (P1; :::; Pn) the fun
tion des
ribed in se
tion 2. F is seen as a fun
tion fromKn to Kn. Let  be an element of Kn. Let X1; :::;Xk be k random plaintexts (k = n typi
ally), andY1; :::; Yk be the 
orresponding 
iphertexts, i.e. Yi = F (Xi) for i = 1; :::; k. Let Y 0i be the 
iphertext ofthe plaintext Xi +  , i.e. Y 0i = F (Xi +  ) for i = 1; :::; k. Finally, let  0i = Y 0i � Yi (where the addition+ and the subtra
tion � are of 
ourse done 
omponent by 
omponent in K).De�nition of test (A): We will say that \ satis�ed the test (A)" if the ve
tor spa
e generated byall the values  0i is not Kn itself by an aÆne subspa
e (the dimension of this subspa
e will be n � �,where � is one of the ni values).It is very easy to see if a value  satis�es this test (A) or not, sin
e k is very small (k = n typi
ally).Moreover, we have this theorem: 8



Theorem 3.2 The probability that  satis�es the test (A), when  is randomly 
hosen, is � 1qmax(ni) .Proof: The probability that the value A1 = (a1; :::; an1+1) is the same for Xi and Xi +  is 1qn1(be
ause we have qn1 possible values for A1). We write this relation as A1(Xi) = A1(Xi +  ).Moreover, sin
e s is an aÆne fun
tion, if the A1 value is the same for one pair (X;X + ) for a spe
i�
value X, then for all values X 0, we will have A1(X 0) = A1(X 0+ ). So, with a probability 1qn1 , we have:8Xi 2 Kn; B1(Xi) = B1(Xi +  ):Now, sin
e the transformation t is aÆne, we see that all the values  0i = Y 0i � Yi = F (Xi +  )� F (Xi)belong to an aÆne subspa
e of dimension n�n1. We 
an now des
ribe our new atta
k. We pro
eed in�ve steps.1. We �nd about n values  that satisfy the test (A), by randomly trying some  values.2. We say that two su
h values  1 and  2 \belong to the same bran
h" if  1+ 2 (and more generally�1 1+�2 2, �1 2 K, �2 2 K) also satis�es the test (A). We dete
t and group together the values i that belong to the same bran
hes. In this way, we separate the  values in d di�erent groups,that we 
all \bran
hes". We will �nd about n1 independent values  that 
ome from the �rstbran
h, n2 that 
ome from the se
ond bran
h, ..., nd that 
ome from the bran
h number d.3. By an aÆne 
hange of variables, we 
hange the variables xi into x0i su
h that, with these newvariables, the subspa
e generated by the values  of the �rst (resp. se
ond,..., dth) bran
h is
hara
terized by: x01 = ::: = x0n1 = 0 (resp. x0n1+1 = ::: = x0n1+n2 = 0,..., x0n1+:::+nd�1+1 = ::: =x0n1+:::+nd = 0).4. Similarly, by an aÆne 
hange of variables, we 
hange the variables yi into y0i su
h that, with thesenew variables, the subspa
e generated by the values  0 of the �rst (resp. se
ond,..., dth) bran
his 
hara
terized by: y01 = ::: = y0n1 = 0 (resp. y0n1+1 = ::: = y0n1+n2 = 0,..., y0n1+:::+nd�1+1 = ::: =y0n1+:::+nd = 0).5. At this point, all the bran
hes have been dete
ted and isolated. To 
omplete the atta
k, we 
annow perform an exhaustive sear
h on ea
h input of ea
h of the d bran
hes.Note: In the se
ond atta
k, we did not use the fa
t that the S-boxes are polynomial fun
tions ofdegree two in a basis. So the atta
k will work in the same way whatever the fun
tions in the S-boxesmay be.3.4 Third atta
k: gradient 
ryptanalysisWe now introdu
e a new tool to atta
k the s
heme with S-boxes. The general prin
iple of the algorithmis exa
tly the same as in the �rst atta
k that we 
alled \
anoni
al 
ryptanalysis". It is based on thefa
t that, with a rather high probability, a linear 
ombination Q = Pni=1 �iPi(x1; :::; xn) of the publi
polynomials has a \number of independent variables" less than n.In the 
ase of quadrati
 polynomials, we saw that this \la
k" of variables 
an be dete
ted be
ause a
anoni
al form exists, whi
h enables us to read the \real" number of variables of su
h a polynomial.But as soon as the degree is greater or equal than three, we don't have su
h a 
anoni
al representation.The new idea is to use the so-
alled gradient of Q. For x = (x1; :::; xn), it is de�ned by:grad Q(x) = � �Q�x1 (x1; :::; xn); :::; �Q�xn (x1; :::; xn)�:The following theorem shows the link between the gradients of Q and the number of independentvariables of Q:Theorem 3.3 Let Q be a quadrati
 form in n variables over a �eld K, then:1) If the 
hara
teristi
 of K is > 2, then the number k of independent variables of Q is equal to thedimension of the subspa
e A generated by all the grad Q(x) (x 2 Kn).9



2) If the 
hara
teristi
 of K is 2, then it is easy to �nd a non singular linear substitution of theindeterminates that transforms Q into a quadrati
 form:R(x01; :::; x0n) = �(x01; :::; x0dimA) + nXi=dimA+1�ix02i ;where � is a quadrati
 form over K. Moreover the number k of independent variables of Q is:k = dimA+ � 0 if 8i; �i = 0.1 if 9i; �i 6= 0.The rest of the atta
k is similar to that des
ribed in the 
anoni
al 
ryptanalysis. The great di�eren
ehere is that we 
an derive the same kind of theorem for 
ubi
 forms over a �eld K, and more generallyfor forms of any degree over K.3.5 Fourth atta
k: linearity in some dire
tionsThis atta
k is probably the simplest of all our atta
ks.As above, the atta
k is based on the fa
t that, with a rather high probability, a linear 
ombinationQ = nPi=1�iPi(x1; :::; xn) of the publi
 polynomials has a \number of independent variables" less than n.For su
h a Q, there are some values d = (d1; :::; dn), d 6= 0, su
h that:8x 2 Kn; Q(x+ d) = Q(x): (#)From (#) we will show how to �nd these values d.If xixj is a term of Q(x), then in (#) this xixj gives the term: (xi + di)(xj + dj) � xixj, i.e. it gives:xidj + xjdi + didj.Therefore, by writing in (#) that all the terms in xk, 1 � k � n, are zero, we will have n equations ofdegree one in n variables (there variables are the d� variables). So by gaussian redu
tions, we will �ndthe set of the solutions d, as wanted.As a result, we have found a break-up into the spa
es generated by the S-boxes. By iterating this,we will �nd the break-up into ea
h of these spa
es, and the s
heme is very easy to break by simpleexhaustive sear
h on the 
leartext from ea
h S-box.3.6 Linear approximations of the S-boxesA natural idea is of 
ourse to also try linear 
ryptanalysis, by linear approximations of the S-boxes.However, we did not see how to use this idea for an eÆ
ient 
ryptanalysis, even when the S-boxes arepubli
. The problem 
omes from the fa
t that s and t are very general aÆne bije
tions (mu
h moregeneral than the P transformation.of DES for example), and that they are se
ret.3.7 Con
lusionIn 
on
lusion, one round of small S-boxes does not give se
ure algorithms. So, for se
urity, we must haveeither a transformation that manipulates large values (su
h a transformation is thus not exhaustivelystorable in a S-box), or more than one round. We will spe
i�
ally study the 
ase of small S-boxes withtwo rounds later in this paper.4 How to separate large bran
hes in the C� s
hemeAs we mentioned in se
tion 2 (see note 5), ea
h of the atta
ks des
ribed in se
tion 3 gives a way tobreak the C� s
heme of Matsumoto and Imai, when the ni parameters (whi
h measure the size of thebran
hes) are small. However, this 
ryptanalysis is deeply based on the fa
t that the bran
hes aresmall, and does not give any result in the 
ase of large bran
hes.Nevertheless, we have found another atta
k to separate large bran
hes in the Matsumoto-Imai s
heme,even if they are large. This atta
k is des
ribed in the extended version of [13℄ (available from theauthor). 10



Part IIDesign of Two Round S
hemes5 Complexity of fun
tional de
ompositionAs we saw in se
tion 3, the s
heme whi
h uses only one round of S-boxes is inse
ure, and we 
an useseveral methods to \separate" the bran
hes from ea
h other.Then a natural question arises: is it possible to design a more se
ure 
ryptosystem by using two roundsof transformations, ea
h of whi
h is given by polynomials of degree two ? This leads to the followingproblem:De
omposition problem: Let g and h be two fun
tions whi
h map Kn into Kn and whi
h are givenby polynomials of total degree two in n variables over K. Then f = g Æ h is also a fun
tion from Knto Kn, and it is given by n polynomials of degree four in n variables over K. Suppose that f is given.Is it 
omputationally feasible to re
over g and h ?A positive answer to that problem would imply that the two rounds 
an be easily separated fromea
h other. So, to break the s
heme, we would only have to break two independent s
hemes given byquadrati
 polynomials in n variables.That would of 
ourse make the idea of using two rounds uninteresting. However, the de
omposition ofmultivariate polynomials was studied by Matthew Di
kerson, who gave an algorithm for the followingproblem:Multivariate left de
omposition: Given polynomials f and h1,...,hn in K[X1; :::;Xn℄, and aninteger r, de
ide if there exists a polynomial g(x1; :::; xn) of total degree at most r that 
omposes withthe hi's to give f . That is, does there exist a polynomial g(x1; :::; xn) su
h thatf(x1; :::; xn) = g(h1(x1; :::; xn); :::; hn(x1; :::; xn))and deg(g)� r ? If so, determine the 
oeÆ
ients of g.In [5℄, Di
kerson presents the best-known algorithm for this problem, whi
h is polynomial in the degreeof f; h1; :::; hn, but exponential in the number n of variables (note that our de
omposition problem iseven harder, be
ause the hi's are not known).He also shows that the general problem of de
omposition of multivariate polynomials is diÆ
ult, be
ausethe following one is NP-hard:s-1-de
omposition problem: Given a moni
 univariate polynomial f(x) and an integer s, de
ide ifthere exists an s-1-de
omposition of f , i.e. a moni
 univariate polynomial h of degree s, and a bivariatepolynomial g(y; x) 2 K[Y;X℄ of the form g(y; x) = Qri=1(y + �ix + �i) with �i; �i 2 K̂, an algebrai
extension of K, su
h that f(x) = g(h(x); x). If so, determine the 
oeÆ
ients of g and h.There are some reasons to think that the following problem is also NP-hard (
f [5℄, problem 14, p. 74):Multivariate de
omposition of given degree: Given a polynomial f in K[X1; :::;Xn℄ and somesubset of the following: integers k; r; s1; :::; sk, a polynomial g(x1; :::; xk)2 K[X1; :::;Xk ℄, and polynomi-als h1(x1; ::; xn),..., hk(x1; :::; xn), de
ide if there exists a fun
tional de
omposition g; h1; :::; hk of f (i.e.f = g(h1; :::; hk)) su
h that degg = r, and deghi = si for 1 � i � n. If so, 
ompute those 
oeÆ
ients ofg and the hi's whi
h were not given.Di
kerson (see [5℄, p. 75) noti
es that: \The s-1-de
omposition problem seems intuitively easier thanproblem 14. In problem 14, f , g and h are general multivariate polynomials of arbitrary dimension.Furthermore polynomial g takes the polynomial hi as arguments, and we know nothing about the formof g other than its degree. In the s-1-de
omposition problem, on the other hand, f and h are bothunivariate polynomials and g is only bivariate. Furthermore, g takes x and not another polynomialas its se
ond argument. We also know a great deal about the stru
ture of the polynomial g, namely11



that it fa
tors as: g(y; x) = Qri=1(y + �ix+ �i). However, we have tried without su

ess to redu
e thes-1-de
omposition problem to problem 14."So, it is still an open problem...That is the reason why we propose to base a 
ryptosystem on two rounds of quadrati
 transformations.Remark 1: The de
omposition problem of this paper 
onsists in �nding the de
omposition of amultivariate polynomial f (of total degree 4 in n variables x1, ..., xn) into two multivariate polynomialsg and h, of total degree 2, su
h that f = g Æ h. In a basis, g (and h) are written with about n � n22
oeÆ
ients. When we write this equation f = g Æ h in a basis, we obtain about n � n44! equations inthe 2 � n � n22 unknown 
oeÆ
ients. So we have O(n5) equations of degree total two in the O(n3)unknowns. There is maybe no polynomial time algorithm for this problem (unlike if we had O(n6)equations), but sin
e the number of quadrati
 equations is mu
h larger than the number of unknowns,one 
an be dubitious about the 
han
es to rely this problem to an NP-
omplete problem. Moreover, thisalso shows that, most of the time, there exists \essentially" one de
omposition of f (by \essentially",we do not take into a

ount all the obvious solutions than 
an be dedu
ed from one solution, i.e. allthe (g Æ ') Æ ('�1 Æ h), where ' is an aÆne permutation of the variables.Remark 2: In 1999, in the paper [4℄, an algorithm to �nd the de
omposition of two multivariatepolynomials of degree two has been published. However, this algorithm needs all the des
ription of the
omposition. So, despite the results of this paper [4℄, we will still be able to design s
hemes by givingonly part of the 
omposition, or by \perturbating" the 
omposition as we will see below.6 Two rounds: A general des
ription of the s
hemes (\2R" and\2R�" s
hemes)The general s
heme will be the following one:As in se
tion 2, a �nite �eld K, with q = pm elements, is publi
, and we want to transform a 
leartextx = (x1; :::; xn) 2 Kn into a 
iphertext y = (y1; :::; yn) 2 Kn.The se
ret items will be:1. Three aÆne bije
tions r, s and t from Kn to Kn.2. An appli
ation � : Kn ! Kn given by n quadrati
 equations over K.3. An appli
ation  : Kn ! Kn given by n quadrati
 equations over K.If we have the se
rets, then we 
an obtain y from x as follows:1. x = (x1; :::; xn) is �rst transformed with the aÆne se
ret permutation r into r(x) = a = (a1; :::; an).2. Then we 
ompute b = �(a).3. b = (b1; :::; bn) is then transformed with the aÆne se
ret permutation s into s(b) = 
 = (
1; :::; 
n).4. Then we 
ompute d =  (
).5. Finally, d = (d1; :::; dn) is transformed with another permutation t, into t(d) = y = (y1; :::; yn).The publi
 items are:1. The �eld K and the length n of the messages.2. Some of the n polynomials P1; :::; Pn of degree four in n variables over K, su
h that yi =Pi(x1; :::; xn) (1 � i � n). When all these polynomials are given, we 
all the s
heme a \2Rs
heme". When only some of these polynomials are given, we 
all the s
heme a \2R� s
heme".12



So anyone 
an en
ipher a message.Moreover, if the se
ret items are known, we must be able to de
ipher a message. For that purpose, weneed to invert the fun
tions � and  . In pra
ti
e, � and  
an be 
hosen among the following 
lassesof fun
tions:1. \C�-fun
tions": monomials over an extension of degree n over K, su
h as a 7! a1+q� (they arethe basi
 transformations in the C� s
heme of Matsumoto and Imai, 
f [12℄).2. \Triangular-fun
tions": (a1; :::; an) 7! (a1; a2 + q1(a1); a3 + q2(a1; a2); :::; an + qn�1(a1; :::; an�1)),where ea
h qi is a quadrati
 polynomial in i variables overK (in [7℄ Fell and DiÆe used a parti
ular
ase of these transformations).Note: If jKj is even, then x 7! x2 is a bije
tion on K. So in this 
ase, we 
an de�ne as\triangular-fun
tions" all the fun
tions (a1; :::; an) 7! (a�11 ; a�22 +q1(a1); :::; a�nn +qn�1(a1; :::; an�1)),where ea
h qi is a quadrati
 polynomial, and where ea
h �i is either 1 or 2.3. \S-boxes-fun
tions": they have already been de�ned in se
tion 2, in the 
ase of a one-rounds
heme.4. \One S-box followed by a triangular 
onstru
tion": (a1; :::; an) 7! (b1; :::; bn), with (b1; :::; b�) =S(a1; :::; a�) and bi = ai + qi�1(a1; :::; ai�1) for � + 1 � i � n. Here, S, q�, ..., qn are quadrati
fun
tions, and � 
an be seen as the size of the S-box.5. \Triangular with S-boxes fun
tions", or \General S-boxes fun
tions": (a1; :::; an) 7! (b1; :::; bn),with: 8>>>>><>>>>>: (b1; :::; bn1) = S1(a1; :::; an1)(bn1+1; :::; bn1+n2) = S2(an1+1; :::; an1+n2) + (q1(a1; :::; an1); :::; qn2(a1; :::; an1))::::::::::::::::::::(bn1+:::+nd�1+1; :::; bn1+:::+nd) = Sd(an1+:::nd�1+1; :::; an1+:::+nd)+ (qn2+:::+nd�1+1(a1; :::; an1+:::+nd�1); :::; qn2+:::+nd(a1; :::; an1+:::+nd�1)):where the fun
tions Si and qi are all quadrati
 over K.6. \D� fun
tions": the de�nitions and analysis of these D� fun
tions are the main thema of [16℄.Note: It is easy to see that 
lasses number 2, 3 and 4 are just parti
ular 
ases of 
lass number 5.The �rst two have the advantage of being bije
tions (D� fun
tions will also be bije
tive). But, as wewill see in se
tions 7 and 8, all the s
hemes where  is one of the fun
tions of 
lasses 1 and 2, areinse
ure, whatever we may 
hoose for �. On the 
ontrary, if the se
ond round fun
tion  is 
hosen in
lasses 3, 4, 5 or 6, and the �rst round fun
tion � in 
lasses 1, 2, 3, 4, 5 or 6, the 
orresponding s
hemesseem to resist 
ryptanalysis, so far. We 
all these s
hemes the \2R" s
hemes (\2R" stands fro \tworounds").7 Cryptanalysis of a se
ond round with C�In this se
tion, we study the s
heme des
ribed in se
tion 6, when  is a C�-fun
tion.A typi
al example of this situation is the 
ase where � and  are both C�-fun
tions. As was pointedout by Ja
ques Patarin (
f [15℄), this s
heme is inse
ure. Moreover, the 
ryptanalysis of [15℄ 
an beapplied even if � is not a C�-fun
tion. Whatever the fun
tion � of the �rst round may be, the basi
idea of the atta
k is to 
ompute all the equations of the form:Xi;j;k�ijkyixjxk +Xi;j �ijxixj +Xi;j �ijyixj +Xi !ixi +Xi �iyi + �0 = 0and then to introdu
e some \transition" variables pi su
h that these equations 
an be written:Xi;j 
ijpiyj +Xi �ipi +Xi �iyi + Æ0 = 0:13



ar : se
ret aÆne permutationx : 
leartext
a1 an1 an1+1 an1+n2 SdS2S1 qd(a1; :::; an�nd)�q2(a1; :::; an1)� bs : se
ret aÆne permutation

1 
n01 
n01+1 
n01+n02 S0dS02S01 q0d(
1; :::; 
n�n0d)�q02(
1; :::; 
n01)� dt : se
ret aÆne permutationy : 
iphertextFigure 3: Two rounds of triangular S-boxes (su
h a s
heme may be se
ure...)14



ar : se
ret aÆne permutationx : 
leartext
an qn�k(a1; :::; an�1)�ak+2q2(a1; :::; ak+1)�ak+1q1(a1; :::; ak)�a1 akS1


s : se
ret aÆne permutationb

n q0n�k0(
1; :::; 
n�1)�
k0+2q02(
1; :::; 
k0+1)�
k0+1q01(
1; :::; 
k0)�
1 
k0S01

dt : se
ret aÆne permutationy : 
iphertext
Figure 4: Two rounds of \One S-box followed by a triangular 
onstru
tion" (su
h a s
heme may bese
ure...) 15



When the yi variables are given, then from these equations we 
an 
ompute the pj variables by Gaussianredu
tions. Finally, we 
an dedu
e x from the pj by using:1. The 
ryptanalysis of the C� s
heme (
f [13℄) if � is a \C�-fun
tion" (this is exa
tly the situationof [15℄).2. A 
ryptanalysis similar to the one des
ribed in se
tion 8, if � is a \triangular-fun
tion".3. The 
ryptanalysis of one round of S-boxes (see se
tion 3), if � is a \S-boxes-fun
tion".8 Cryptanalysis of a se
ond round with a triangular-fun
tionHere, we 
onsider the s
heme of se
tion 6, when  is a \triangular-fun
tion". More pre
isely, we have:(d1; :::; dn) =  (
1; :::; 
n) = (
1; 
2 + q1(
1); :::; 
n + qn�1(
1; :::; 
n�1));where q1; :::; qn�1 are quadrati
 polynomials.On
e more, that s
heme is inse
ure. The key idea is to use the fa
t that the equation d1 = 
1 gives anequation of degree only 2 in the xi variables, and that, for ea
h i, 1 � i � n, 
i 
an be obtained fromdi and 
1; :::; 
i�1. An atta
k 
an be derived as follows:1. By Gaussian redu
tions on the �i, �ij , 
i and Æ variables below, �nd the equations of the form:Xi �iyi =Xi Xj �ijxixj +Xi 
ixi + Æ:The ve
tor spa
e of the solutions has dimension one (be
ause the solutions 
ome from d1 = 
1),so that we obtain d1 =Pi �iyi and 
1 =PiPj �ijxixj +Pi 
ixi + Æ.2. By Gaussian redu
tions on the �0i, �0ij , 
0i and Æ0 and on the 
oeÆ
ients of q1, �nd the equationsof the form:Xi �0iyi =Xi Xj �0ijxixj +Xi 
0ixi + Æ0 + q1�Xi Xj �ijxixj +Xi 
ixi + Æ�:The ve
tor spa
e of the solutions has again dimension one (be
ause the solutions 
ome fromd2 = 
2 + q1(
1)). We thus obtain d2 = Pi �0iyi and 
2 = PiPj �0ijxixj +Pi 
0ixi + Æ0. We alsoobtain q1.By repeating this argument n times, we have �nally found 
1; :::; 
n as quadrati
 polynomials in x1; :::; xn.What remains is to 
ryptanalyse the �rst round, i.e. the fun
tion 
 = s Æ � Æ r(x), and that is feasiblefor ea
h of the possible 
hoi
es for � (see se
tion 3).9 Se
ond round with S-boxes: des
ription of the s
hemesIn this se
tion, we present our 
andidate algorithms. They are all based on the general s
heme des
ribedin se
tion 6. As we said in se
tion 6, four possibilities exist for the se
ond round fun
tion  . We 
hoose as a \S-boxes-fun
tion", or as \one S-box followed by a triangular 
onstru
tion" or as \S-boxes
ombined with a triangular 
onstru
tion", or as a \D� fun
tion" (D� fun
tions are treated in [16℄ andnot in this paper). The algorithms are also di�erentiated from ea
h other by the 
hoi
e of the �rstround fun
tion �.As we said before, six possibilities exist for �:1. � is a \C�-fun
tion".2. � is a \triangular-fun
tion".3. � is a \S-boxes-fun
tion". 16



4. � is \one S-box followed by a triangular 
onstru
tion".5. � is a \Triangular with S-boxes fun
tion".6. � is a \D� fun
tion" (D� fun
tions are treated in [16℄ and not in this paper).Figure 3 illustrates the example with two rounds of \S-boxes 
ombined with a trangular 
onstru
tion".Similarly, �gure 4 illustrates the example with two rounds of \one S-box followed by a triangular
onstru
tion".In the design of these s
hemes, the main idea is to hide the quadrati
 fun
tion � (whi
h is weak whenused alone, as we saw in se
tion 3) with the se
ond round  . For instan
e, in the 
ase of \C�-S-box",the algebrai
 stru
ture of the C�-fun
tions (whi
h is not 
ompletely hidden in the s
heme of Matsumotoand Imai, whi
h led to the 
ryptanalysis of their s
heme) seems diÆ
ult to re
over if it has been mixedwith S-boxes, whi
h are supposed to have no spe
ial stru
ture. This point will be detailed in se
tion10.3.Moreover, as we pointed out, the problem of de
omposition of multivariate polynomials seems to bediÆ
ult, so probably no general atta
k exists to \separate" the two rounds from ea
h other.In 
on
lusion, the se
urity of our s
hemes is an open problem...Note: When the �rst round is a \C�-fun
tion" and the se
ond round is a \S-boxes-fun
tion", thes
heme may be se
ure, but it be
omes inse
ure if the two quadrati
 fun
tions are put the other wayround, as we saw in se
tion 7. This shows that the analysis of the se
urity 
losely depends on the orderof the quadrati
 fun
tions used in the s
hemes.10 Remarks about the se
urity of these 2R (\two round") s
hemes10.1 The \Quadrati
 Degeneration Problem" (QDP)As we have seen in se
tion 3, the se
urity of the one round s
hemes is related to the DP problem.Similarly, the se
urity of the two round s
hemes seems to be related to the following problem, that we
all the \Quadrati
 Degeneration Problem" (QDP).Given: A multivariate equation of total degree four, y = P (x1; :::; xn), where P is of degree four,with n variables x1, ..., xn.Problem: Find (at most) n� 1 polynomials of total degree two, P 01, ..., P 0n�1, and a polynomial Qof total degree two, su
h that: � 8i; 1 � i � n� 1; x0i = P 0i (x1; :::; xn)y = Q(x01; :::; x0n)We do not know if an algorithm with polynomial 
omplexity exists for this problem (when a solutionexists). So we do not know how to 
ryptanalize the general two-round s
hemes.Remark: In the problem above, we have to �nd n� k polynomials P 01, ..., P 0n�k, with k = 1. Whenk = 0, this is the de
omposition problem (of a multivariate polynomial of total degree 4). If the problemis easy for k = 1, or for k = 2, or for k = 3 for example, then it would give a 
ryptanalysis of two-rounds
hemes, and this problem may indeed be easier for k = 1, or k = 3, than for k = 0.10.2 E�e
t of the gradient 
ryptanalysisThe method we des
ribed in se
tion 3.4, in order to 
ryptanalyse one round of S-boxes, 
an be extendedto the 
ase of two rounds. But, fortunately or unfortunately, it does not seem to lead to a pra
ti
alatta
k against our s
hemes. Let us des
ribe the idea.We use the notations of se
tions 6 and 10.1. Let us 
onsider h = s Æ� Æ r, whi
h is given by n quadrati
polynomials h1; :::; hn in n variables over K. Let f = Pi �iPi, where the �i's are randomly 
hosen inK, and let g =Pi �i(t Æ  )i, so that f = g Æ h. 17



We suppose for simpli
ity that the sizes of the S-boxes of  are n1 = ::: = n8 = 8. Then, with aprobability 128 = 1256 , g has no 
omponents from the �rst S-box. An easy 
al
ulation then gives:grad f(x) = nXr=1 �g�
r (h(x)) grad hr(x) = nXr=9 �g�
r (h(x)) grad hr(x):Therefore, grad f(x) lies in the subspa
e generated by (grad h9(x); :::;grad hn(x)), and that is truefor any x = (x1; :::; xn) in Kn. So we may dedu
e the following equalities:8>><>>: det(grad f(x);grad h2(x); :::;grad hn(x)) = 0det(grad h1(x);grad f(x);grad h3(x); :::;grad hn(x)) = 0:::det(grad h1(x); :::;grad h7(x);grad f(x);grad h9(x); :::;grad hn(x)) = 0Let (�1)i0+j0�i0j0(x) be the value of the determinant of the matrix � �hi�xj (x)� 1�i6=i0�n1�j 6=j0�n . Then theequations be
ome the eight following:nXj=1�ij(x) �f�xj (x) = 0 (1 � i � 8);where �ij(x) is unknown and is polynomial of total degree n � 1 in x. We may imagine using a lotof di�erent values of x to obtain relations between the 
oeÆ
ients of the polynomials �ij(x), but thistask seems to be impra
ti
al, due to the very high degree of these polynomials.Note 1: In the 
ase of one round of S-boxes, the atta
k works, be
ause the 
orresponding �ij are
onstant polynomials. Thus we obtain about 8n equations about the 8n unknown �ij , by trying aboutn di�erent values of x. The �ij 
an then be found by Gaussian redu
tions.Note 2: On
e again, the s
heme seems to resist this atta
k be
ause the inverse of the quadrati
fun
tions that we use, has a high total degree in x.10.3 E�e
t of the aÆne multiple atta
kAnother atta
k, whi
h is very general, was des
ribed in [14℄. It 
an be used against s
hemes based ona univariate polynomial transformation hidden by se
ret aÆne bije
tive transformations.This atta
k is based on the following fa
t: if f is a univariate polynomial over a �nite �eld K, then byusing a general algorithm (see for example [3℄), we 
an 
ompute an \aÆne multiple" of the polynomialf(x)� y, i.e. a polynomial A(x; y) 2 K[X;Y ℄ su
h that:1. Ea
h solution of f(x) = y is also a solution of A(x; y) = 0.2. A(x; y) is an aÆne fun
tion of x.We will now see that, be
ause of the aÆne multiple atta
k, we 
annot 
hoose n1 = ::: = nd = 1 in ours
hemes, i.e. ea
h S-box must have at least two elements of K as input and output.� Suppose �rst that K has q = 2m elements and that n1 = ::: = nd = 1 (for example m = 8, n = 8and d = 8). Ea
h S-box Se is given by a univariate quadrati
 polynomial over K = GF (2m).If m = 1, then the 
ryptanalysis is obvious: the quadrati
 polynomial is in fa
t an aÆne fun
tion(be
ause x2 = x if GF (2)), and thus t Æ  Æ s is itself a se
ret aÆne fun
tion, so that the s
heme
an be broken as a one-round s
heme, and so 
an be easily broken.If m > 1, then the same atta
k 
an also work as follows. The publi
 equations are given overK = GF (2m), but the 
ryptanalyst 
an rewrite them over GF (2), so that the previous atta
kapplies, with mn publi
 equations of degree 2 over GF (2), instead of n publi
 equations of degree4 over GF (2m). 18



� Suppose now thatK has q = pm elements, where p is a small prime, p 6= 2. Sin
e the 
hara
teristi
is not 2, the S-boxes 
annot be seen as aÆne fun
tions any more. However, we 
an use here theaÆne multiple prin
iple to atta
k the s
heme.Let fe(x) = �ex2+�ex+
e be the univariate quadrati
 polynomial stored in Se (1 � e � d), andlet Ae(x; y) be an aÆne multiple of fe(x) � y. If all the exponents in y are � k, then there willbe an atta
k with a Gaussian redu
tions on O(n1+k) terms. Moreover, sin
e p is small, k is alsosmall, so that this atta
k is eÆ
ient.Example: We take p = 3. An easy 
al
ulation gives Ae(x; y) = �2ex3 � (�ey + �2e � �e
e)x +�e(y � 
e). Then, by Gaussian redu
tions, we 
ompute all the equations of the form:Xi;j;k�ijkyixjxk +Xi;j �ijxixj +Xi;j �ijyixj +Xi !ixi +Xi �iyi + �0 = 0and we 
an then pro
eed as in se
tion 7.In 
on
lusion, we do not re
ommend using S-boxes given by a univariate polynomial of degree 2 overK.Note If we have for example K = GF (2), n = 64 and n1 = ::: = n8 = 8, we 
an imagine a similaratta
k, if we 
onsider that ea
h S-box Se 
an be given as a univariate polynomial over GF (28). Butit is impra
ti
al, be
ause this polynomial fe is generally of very high degree (about 256), and most ofthe time, the degree of Ae(x; y) in y be
omes very high too. Therefore, the Gaussian redu
tions is notfeasible any more.11 How to 
hoose the parameters and smart
ard implementationsLet K = GF (2m) (K is not ne
essarily of 
hara
teristi
 2, but for simpli
ity we will assume that it isso; moreover the 
omputations are a little easier in 
hara
teristi
 2). Let n be, as usual, the lengthof the 
leartext x or of the 
iphertext y (i.e. x 2 Kn and y 2 Kn). Let F be one of our 
andidatealgorithms (with publi
 polynomials of degree four).We re
ommend 
hoosing m and n su
h that:�mn � 128 (C1)n � 12 (C2)We also re
ommend to not publish in the publi
 key all the equations of the 
omposition (i.e. to havea \2R�" s
heme). (C3)Condition (C1): To avoid exhaustive sear
h on the 
leartext x, we need mn � 64. Moreover, EliBiham found an atta
k, based on the \birthday paradox" that shows that we need in fa
t mn � 128.This atta
k is des
ribed in Appendix 1.Condition (C2): When n is very small (n < 8 typi
ally), then to solve a set of n polynomialequations of small total degree d (d � 4 for example) with n variables in a �nite �eld K is feasible withad ho
 te
hniques (for example with GCD of polynomials, Gr�obner bases, or by exhaustive sear
h onsome of the variables). Moreover, this is often easy even when K is large (be
ause here n is very small).So, in order to avoid these atta
ks, we must have n � 8. Moreover, for polynomial equations of totaldegree d = 2, we re
ommend for se
urity to have n � 16, even if it is not yet 
lear if these atta
ks areeÆ
ient when 8 < n < 16. Similarly, for polynomial equations of total degree d = 4, we re
ommendfor se
urity to have n � 12, even if it is not 
lear if these atta
ks are eÆ
ient when 8 < n < 12. (Thisgives the 
ondition (C2)).Condition (C3): Condition (C3) is here to avoid a ni
e idea from [4℄ that may 
reate an eÆ
ientde
omposition algorithm. This idea is des
ribed in Appendix 2.19



Note: Instead of (C3), another way to avoid the results of paper [4℄ is to introdu
e a \perturbation"in the originally publi
 equations, as it was suggested in [17℄ for the C� s
heme. These \perturbations"
an 
onsist in introdu
ing extra variables (it will give a 2RV s
heme), �xing some variables (it willgive a 2RF s
heme), mixing the equations with truly random ones (it will �ve a 2R+ s
heme), et
.Moreover, all these \perturbations" 
an be 
ombined (it gives a 2R�+VF s
heme). See [17℄ for moredetails. (In [17℄, these ideas are used and studied in the 
ase of a C� s
heme).Speed: Our s
hemes are very fast in se
ret key 
omputations (more than 100 times faster than a 512bits RSA for example). However, our s
hemes may be slower in publi
 key 
omputations 
omparedwith a 512 bits RSA with a small publi
 exponent e.Length of the publi
 key:� If m = 1 (i.e. K = GF (2)), then the length of the publi
 key is huge: it is 162 Mbytes withn = 128.� If m = 4 (i.e. K = GF (16)), then the length of the publi
 key is more realisti
: it is 920 Kbytesif n = 32.� Moreover, if r, s and t are linear (not only aÆne), and if the S-boxes are homogeneous, thenthe publi
 polynomials will be homogeneous. If m = 4, the length of the publi
 key is then 818Kbytes if n = 32.� If K = F257 or K = F256 and n = 16, then the length of the publi
 key is only ' 20 Kbytes.� It might also be possible to 
hoose r, s, t and the S-boxes as polynomials with values in a sub�eldK 0 of K. For example, if K = GF (16) and K 0 = GF (2), then the publi
 key is divided by 4: itslength is now 205 Kbytes if n = 32. Moreover, if K = F256, K 0 = GF (2) and n = 16, then thelength of the publi
 key is only ' 2:5 Kbytes. It is not yet 
lear if this de
reases the se
urity ofthe s
heme or not.So, if m 6= 1, the s
hemes 
an have a reasonable length for the publi
 key, despite the degree four ofthe publi
 polynomials.Smart
ard implementations, se
ret key 
omputations: The se
ret 
omputations are very easyand very fast in a smart
ard. The RAM needed when mn � 128 is about 32 bytes. The ROM neededfor the program whi
h 
omputes F is also very moderate. The se
ret fun
tions r, s and t 
an be storedin EEPROM or be 
omputed from a se
ret seed of 64 bits stored in EEPROM. If the S-boxes have verysmall inputs, they 
an be stored in EEPROM, or even in ROM if all the 
ards have the same S-boxes.For example, if a S-box takes 8 bits in input and gives 8 bits in output, it will be stored in 256 bytes.We may also have the S-boxes all the same, or su
h that ea
h S-box Si 
an easily be 
omputed from S1and/or a small se
ret seed (if the S-boxes have larger inputs, for example 16 bits in input and 16 bits inoutput, then the S-boxes might be re
omputed and the inversion might require some small polynomialresolutions). As we 
an see, the parameters 
an be 
hosen in order to have very eÆ
ient se
ret key
omputations in smart
ards.Smart
ard implementations, publi
 key 
omputations: A smart
ard 
an 
ompute F at leastas easily as F�1 when F is its own fun
tion, i.e. when it uses its se
ret values to 
ompute F and F�1.The publi
 key is then not needed to 
ompute F and F�1. In some appli
ations, the smart
ard doesn'thave to make publi
 key 
omputations (whi
h are then done in a PC for example), but only se
ret key
omputations. In this 
ase, our s
hemes are very eÆ
ient. However, in some appli
ations, the publi
key is required (for example we may ask for a stored and signed publi
 key). As we have seen above,in some implementations, we may have a publi
 key of 7.5 Kbytes (in 1996, some smart
ards 
an store8 Kbytes of EEPROM, or more), but for most of the s
hemes, the publi
 key is larger than that, andit will then not be possible to store it in the smart
ard. In this 
ase, and if the publi
 key must begiven, we 
an imagine that the signed publi
 key is stored in another devi
e than the se
ure 
hip of the
ard, for example in an opti
 storage on the 
ard... Or, if we have a lot of time to 
ompute the publi
20



key, the 
ard will 
ompute and give some spe
i�
 
leartext/
iphertext pairs (it will 
hoose these pairsof 
ourse), and by Gaussian redu
tionss, the publi
 key will be 
omputed outside (however, this mighttake a long time !). So, as we 
an see, the publi
 key 
an be stored only in very few 
ases, and mostof the s
hemes are very eÆ
ient in smart
ards, when only se
ret key 
omputations are required in thesmart
ard.12 Con
rete examples of S-boxesAtta
ks on Matsumoto-Imai like 
ryptosystems often rely on the existen
e of general relations betweenthe inputs xi and the outputs yj , that we 
an 
lassify as follows:Type 1 relations: P 
ijxiyj +P�ixi +P�iyi + Æ0 = 0:Type 2 relations: P 
ijxiyj +P�ijyiyj +P�ixi +P�iyi + Æ0 = 0:Type 3 relations: P �ijkxiyjyk +P 
ijxiyj +P�ijyiyj +P�ixi +P�iyi + Æ0 = 0:In order to avoid generalisations of these atta
ks against our two round s
hemes, we will sele
t S-boxessu
h that no type 1, 2 or 3 relations exist (ex
ept 0 = 0 or obvious relations su
h that yi = y2i in F2).Ni
olas Courtois did for us some simulations in order to see if there are some small S-boxes withoutany type 1, 2, 3 relations. The results of these simulations are given in Table 1, Table 2 and Table 3.Note: In table 1, table 2 and table 3, � is by de�nition the number su
h that the S-boxes take �elements of the �eld Fq in input and give also � elements of Fq in output.� 2 3 4 5 6 7 8 9 10 11F2 6= 0 6= 0 6= 0 6= 0 7 991 0 0112 0 0114 0 078 0 00F4 6= 0 6= 0 6= 0 0 084 0 00F8 6= 0 0 6105 0 011 0 00F16 6= 0 0 850 0 00F32 26 60250 0 1040 0 00F64 6= 0 0 1248F128 6= 0 0 1456Table 1: some results obtained in 
hara
teristi
 2Legend:type 1 type 2type 3 : means that we found at least one S-box with those numbers of independent equations.6= 0 : means that we did not �nd a S-box with 0 equations of type 1.: we did no simulations but we expe
t no equations of type 1, 2, 3 for most of the S-boxes21



Examples:� For � = 10 and F2, we found a S-box with 10 bits in input and 10 bits in output, where no type1, 2 or 3 equations exist.� For � = 4 and F16, we found a S-box with 4 elements of F16 in input and 4 elements of F16 inoutput, where no type 1, 2 or 3 equations exist.� 2 3 4 5F3 2 410 0 114 0 09 0 00F9 2 414 0 01 0 00F27 3 321 0 00Table 2: some results in 
hara
teristi
 3� 1 2 3F5 0 11 0 00 0 00F7 0 00F17 0 00F251 0 00Table 3: some results in 
hara
teristi
 � 5Con
lusion: Even when � is very small, we 
an �nd some S-boxes with no type 1, 2, 3 equations.This is ni
e, sin
e large values of � mean more 
omplex S-boxes, and 
ould imply larger publi
 keys.The example given in se
tion 11, with n = 16 and K = F16 (with a publi
 key of 30 Kbytes) 
an beobtained with 4 S-boxes, ea
h of whi
h has 4 elements of F16 in input and output, and where no type1, 2, 3 relations exist.13 Is it possible to have bije
tive S-boxes ?A natural question is the following: is it possible to use bije
tive S-boxes in our s
hemes ?A �rst idea is using 
onstru
tive methods to build bije
tive S-boxes. Unfortunately, su
h methods havealways given the possibility of an atta
k of the s
heme, so far (for example with C� or triangular-fun
tions).If the probability of being bije
tive were not too small, we 
ould randomly generate fun
tions with asmall degree, and thus �nd some of them whi
h are bije
tive and have no spe
i�
 stru
ture (for example,this se
ond idea works for fun
tions of degree 1). When the degree is � 2, obtaining an a

urateevaluation of the probability of being bije
tive is diÆ
ult. But, if we suppose that this probability isabout the same as for randoms fun
tions, it may be shown (see below) that building bije
tive S-boxeswith this method gives a huge publi
 key for our s
hemes.A new method for building eÆ
ient and strong bije
tive S-boxes with small degree may be dis
overedsome day, but at the present, all known methods give not eÆ
ient or weak bije
tive S-boxes.
22



Rough evaluation of the number of \strong" bije
tive S-boxesThe problem : We would like to know if some \strong" bije
tive S-boxes exist, i.e. some fun
tionsf from GF (2n) to GF (2n) (2 � n � 32), su
h that :1. f is a bije
tion.2. When we 
onsider GF (2n) as a ve
tor spa
e of dimension n over GF (2), then in a basis, f isgiven by n polynomials of degree � d (for us, d = 2 or d = 3).3. f is \strong", i.e. the \
onstru
tion of f" does not give any obvious weakness for the se
urity ofour s
hemes (we will give more details about this point below).For example, with a triangular 
onstru
tion, or with a Matsumoto-Imai C� 
onstru
tion, we 
an veryeasily design a fun
tion f that satis�es 1 and 2. However, the 
onstru
tion of f gives a way to atta
kthe s
hemes. This 
omes from the fa
t that, if f(x) = y, where x = (x1; :::; xn) and y = (y1; :::; yn),and yi = Pi(x1; :::; xn) (1 � i � n), then in these 
onstru
tions, there are some polynomial equationsQi(x1; :::; xn; y1; :::; yn) = 0 of small total degree, and of degree one in the xi variables. More generally,we do not want either to have equations Qi(x1; :::; xn; y1; :::; yn) = 0 of small total degree, ex
ept sumsof produ
ts of the publi
 equations by polynomials of small total degree (i.e. ex
ept the polynomialsof the ideal of K[x1; :::; xn; y1; :::; yn℄ generated by the publi
 equations).When this o

urs, we will say that the \
onstru
tion of f" gives a weakness, and if this does noto

ur, we will say that f is a \strong" bije
tion. So, do strong bije
tions exist (for d = 2 or d = 3 forexample) ?First evaluation : Let �n be the probability for a fun
tion from GF (2n) to GF (2n) to be a bije
tion.Let Hd be the number of fun
tions from GF (2n) to itself, that are given by polynomial equations ofdegree � d in a basis over GF (2). Then, in a �rst evaluation, we may think that the number of \strong"bije
tions from GF (2n) to GF (2n) of degree � d is about �nHd. This 
omes from the fa
t that, in a�rst evaluation, we may suppose that most of the bije
tions are \strong" and that the density of strongbije
tions in Hd is perhaps about the same as the density of strong bije
tions in the set of all fun
tionsfrom GF (2n) to GF (2n).An easy 
al
ulation gives :�n = (2n)!2n:2n ; H2 = 2n(1+n+n(n�1)2 ); H3 = 2n(1+n+n(n�1)2 +n(n�1)(n�2)6 ):Let N = 2n. The Stirling formula N ! � NNe�Np2�N gives :�n = N !NN ' e�Np2�N:Example 1 : Let n = 10. Then N = 1024 and �10 ' 121471 , H2 = 2560, H3 = 21760. Sin
e �10H2is mu
h smaller than 1, in �rst approximation, we expe
t to have no \strong" bije
tions of degree twoover GF (210). Moreover, sin
e �10H3 ' 2289, in �rst approximation, we expe
t to have about 2289\strong" bije
tions over GF (210), of degree three (in a basis).Example 2 : Let n = 6. Then N = 64 and �6 ' 1288 , H2 = 2132. Then, in this �rst evaluation,we may expe
t to have about 2132288 = 244 \strong" bije
tions over GF (26), of degree two in a basis.However, we will see now that this is probably not true.Se
ond evaluation : If f is a \strong" bije
tion and if g and h are two aÆne bije
tive fun
tions,then f 0 = g Æ f Æ h is also a \strong" bije
tion. Moreover, there are exa
tlyqn(n+1)h�1� 1q��1� 1q2�:::�1� 1qn�i23



bije
tions from GF (qn) to GF (qn) that are aÆne over GF (q). So, sin
e we have exa
tlyC = 22n(n+1)h�1� 12�:::�1� 12n �i2possibilities for (g; h), we see that if the numberB of \strong" bije
tions (obtained in the �rst evaluation)is mu
h smaller than C, then is does not mean that there are \about B" strong bije
tions, but it means,in this se
ond evaluation, that we expe
t to have no su
h bije
tion.Examples :� In our example 1 above, C ' 2217 and sin
e 289 > 217, we expe
t indeed to have about 2289\strong" bije
tions of degree three, as 
laimed. These bije
tions of degree three are expe
ted to
ome from about 272 bije
tions fi of degree three, and to be of the form g Æ fi Æ h, where g and hare two aÆne bije
tions.� However, in our example 2 above, we have C ' 281, and sin
e 44 < 81, we expe
t to have nostrong bije
tions of degree two with n = 6 (if we had one, then there would exist at least about281 su
h bije
tions).Results : With our \se
ond evaluation", the results are :� No \strong" bije
tive fun
tions of degree d = 2 are expe
ted to exist.� \Strong" bije
tive fun
tions of degree d = 3 are expe
ted to exist if and only if n � 10.� \Strong" bije
tive fun
tions of degree d = 4 are expe
ted to exist if and only if n � 13.� \Strong" bije
tive fun
tions of degree d = 5 are expe
ted to exist if and only if n � 16.So, if we want to design a bije
tive s
heme with 
omposition of a quadrati
 fun
tion h and a bije
tivefun
tion g made with bije
tive S-boxes, g will have to be of degree d � 3, and therefore F = g Æ hwill be of degree � 6. However, a fun
tion F of degree 6 from GF (2n) to GF (2n) will have a publi
key of 635 Mbytes if n = 64. This is too large for all pra
ti
al appli
ations (at least at the present !).So, if this se
ond evaluation is valid, we 
an 
on
lude that we will not have bije
tive S-boxes in ourtwo-round s
hemes.Note : More pre
isely, we 
an 
on
lude that this \se
ond evaluation" shows that there are probablyno strong bije
tive S-boxes of small degree for \random reasons". However, there may be some for\stru
tural reasons", i.e. the hypothesis that the strong permutations are almost randomly distributedin the subset of multivariate fun
tions of total degree d, may be false. For example, the probability fora linear fun
tion to be a permutation is mu
h higher than the probability for a random fun
tion to be apermutation. So, some strong bije
tive S-boxes may exist despite our evaluations. In this appendix, wehave just studied two \�rst evaluations" based on a random distribution hypothesis, but this hypothesismay be wrong, and some 
onstru
tions for strong permutations of small degree may still exist.14 Comparison with symmetri
al 
ryptosystemsThe 
ryptosystems we study in this paper have a lot of similarities with 
lassi
al symmetri
 
ryptosys-tems (su
h as DES for instan
e), sin
e they use for example S-boxes (i.e. lo
al transformations of asmall number of values), followed by linear transformations, and there are several rounds (two for ours
hemes). However, DES for instan
e (
f [2℄), or Khufu (
f [9℄) are not se
ure when only very fewrounds are used. So, why do our s
hemes (with only two rounds) resist 
lassi
al atta
ks ? This 
an beexplained by the following arguments:1. In ea
h round that uses S-boxes, all the input bits are transformed, and not only half of them, ashappens in a Feistel s
heme, su
h as the one used in DES.24



2. The aÆne transformations are se
ret, and that is not the 
ase for the P transformation of DES,whi
h is publi
.3. Moreover, the aÆne transformations are very general, i.e. every output bit is a linear 
ombinationof all the input bits, and not only of one input bit, su
h as in the P transformation of DES.4. In our s
hemes, the S-boxes 
an be se
ret or publi
. In DES, they are publi
, and in Khufu theyare se
ret.Note 1: R. Rivest re
ently proposed XDES, whi
h is a 
omposition of DES, an initial simple aÆnese
ret transformation, and a �nal one (more pre
isely, these transformations 
onsist in XORing theinput with a se
ret value). Maybe this 
hange does not strengthen DES against di�erential of linear
ryptanalysis, but it seems to prevent other atta
ks (in parti
ular, against exhaustive sear
h on thekey, 
f [10℄). So, XDES may illustrate the idea that 
omposing an en
ryption algorithm with initialand �nal aÆne se
ret transformations, may lead to a signi�
ant strengthening of this algorithm.Note 2: In our s
hemes, it is very important to have only two rounds, be
ause the 
omposition ofthree rounds, ea
h round being quadrati
, would lead to polynomials of degree eight, so that the lengthof the publi
 key would be mu
h too large for pra
ti
al appli
ations.15 Con
lusionIn this paper, we have studied new asymmetri
 algorithms whi
h all rely on the idea of using one ortwo rounds of very simple quadrati
 transformations, whi
h are hidden by se
ret aÆne tranformations.By \very simple" quadrati
 transformations, we mean quadrati
 transformations given by a triangularset of equations, or given by quadrati
 and small S-boxes. When there is only one round like this,or when the se
ond round is built with fun
tions whose algebrai
 stru
ture is poorly hidden, we haveproven that the 
orresponding s
hemes are inse
ure. From these ideas, we were able to design somenew 
ryptanalysis of the Matsumoto and Imai s
heme C�.However, when the parameters and the quadrati
 polynomials involved in ea
h round are 
arefully
hosen, we still have 
andidate algorithms that seem to resist the atta
ks. In this paper, the main
hara
teristi
 of these s
hemes is that, in the se
ond round, they use S-boxes, whi
h are given bymultivariate polynomials of small degree, and are randomly 
hosen in order to avoid any simple algebrai
stru
ture.Sin
e the publi
ation of these algorithms at ICICS'97, two 
ryptanalysis papers ([1℄ and [4℄) have beenwritten on these algorithms. Due to [1℄, it is ne
essary that the input of the s
hemes has at least 128bits. Due to [4℄, it is re
ommended to not publish all the originally publi
 equations.When all this is done, are these algorithms se
ure ? If they are, it would be a surprising and easy wayof designing asymmetri
 
ryptosystems. If they are not, it would strengthen the idea that the messages
annot be split in small bran
hes, but must be transformed in a global way, and therefore that we needalgebra to build se
ure asymmetri
 
ryptosystems.So the question remains open...
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Appendix 1An atta
k of Eli Biham based on the birthday paradox (
f [1℄)Introdu
tion: Eli Biham found an atta
k of the s
heme based on two rounds of S-boxes with a
omplexity about O(pqn) (instead of O(qn)) for exhaustive sear
h of one 
leartext). Moreover, afterhis atta
k, it is possible to de
ipher very fast any 
iphertext (not only one). At ICICS'97, we gaveexamples with qn � 2128, so that Eli Biham's atta
k is not very eÆ
ient against our published s
hemes,but however this atta
k is very interesting be
ause it illustrates (one more time) the eÆ
ien
y in
ryptanalysis of the \birthday paradox" and it shows that for s
hemes based on two rounds of S-boxeswe really need qn � 2128. (In the HFE s
hemes of [14℄, di�erent ways of having a s
heme with qn ' 264are explained. These ways of having qn ' 264 should not be generalized in the 
ase of two rounds ofS-boxes.)The idea: The idea is to use the fa
t that two inputs that di�er only for one S-box will give thesame output (i.e. a 
ollision) if they have the same output for this S-box.The starting point of the atta
k is to sear
h for a 
ollision f(a) = f(b), and then to randomly 
hoosevalues 
i's and sear
h for (about 100) 
ollisions f(
i � a) = f(
i � b). From these 
ollisions, we willhave a way to dete
t the �rst se
ret linear transformation and the S-boxes of the �rst round.Appendix 2An atta
k (from [4℄) for the de
omposition problemIn [4℄, an algorithm is suggested for 
omputing the de
omposition of two quadrati
 multivariate poly-nomials. The eÆ
ien
y of this algorithm relies on two hypotheses. No simulations have been done sofar on this algorithm, so it is not easy to evaluate the probablity of the algorithm to su

eed (i.e. whenthe two hypotheses are valid). However, this algorithm looks suÆ
iently dangerous to re
ommend tonot publish all the equations of a 
omposing h = f Æ g in the publi
 key of the 2R s
hemes des
ribedin this paper.Notations: Let h = f Æg, when f and g are two quadrati
 fun
tions from (Fq)n to (Fq)n. In a basis,g is given as (g1; :::; gn), where gi, 1 � i � n is a fun
tion from (Fq)n to Fq.Aim of the algorithm: The aim of the algorithm is to �nd the ve
tor spa
e G generated by g1, ...,gn, i.e. G =Ve
t(g1; :::; gn). From G, it is then easy to �nd a de
omposition of h. Sin
e h = f Æ g, h isalso equal to (f Æ A�1) Æ (A Æ g), where A is any linear and bije
tive fun
tion from (Fq)n to (Fq)n.Remark: G is a ve
tor spa
e of dimension about n and G is in
luded in the ve
tor spa
e of dimensionabout n22 of all the quadrati
 polynomials from (Fq)n to (Fq)n.How to 
ompute G: Let V = n nPi=1xiGo. (Remark: V is a ve
tor spa
e of dimension about n2and V is in
luded in the ve
tor spa
e of dimension about n36 of all the 
ubi
 polynomials from (Fq)nto (Fq)n.)To 
ompute G, the algorithm uses two hypotheses:Hypothesis 1: V = Ve
t��hi�xj �:When this hypothesis 1 is true, then we 
an 
ompute V , sin
e h is given.27



Hypothesis 2: G = fpolynomials r of degree 2 su
h that: 8i; 1 � i � n; xi � r 2 V g:When this hypothesis 2 is true, then we 
an 
ompute G sin
e this hypothesis 2 will give relations ofdegree one on the 
oeÆ
ients of r.Remark: To avoid problems su
h that x4i = xi or x3i = xi or x2i = xi, the authors of [4℄ make thehypothesis that q � 5.
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