
Asymmetri Cryptography with S-BoxesIs it easier than expeted to design eÆient asymmetri ryptosystems ?- Extended Version -Jaques Patarin, Louis GoubinBull PTS , 68 route de Versailles - BP 4578431 Louveiennes Cedex - Franee-mail : fJ.Patarin,L.Goubing�frlv.bull.frAbstratIn [12℄, T. Matsumoto and H. Imai designed an asymmetri ryptosystem, alled C�, for authen-tiation, enryption and signature. This C� sheme was broken in [13℄ due to unexpeted algebraiproperties.In this paper, we study some new \andidate" asymmetri ryptosystems based on the idea ofhiding one or two rounds of small S-box omputations with seret funtions of degree one or two. Thepubli key is given by multivariate polynomials of small degree. The C� sheme (when its ni valuesare small) an be seen as a very speial ase of these shemes, but in the new shemes, the algebraiproperties of [13℄ generally do not exist, so that ompletely di�erent ryptanalyti ideas have tobe found. We study the eÆieny of lassial ryptanalysis (suh as di�erential ryptanalysis),and we also present ompleteley new ryptanalyti tools (suh as \gradient ryptanalysis"). Withthese ryptanalysis, most of the \new" algorithms an be broken and we dedue some very di�erentryptanalysis of C�. Moreover, our ryptanalysis and the ryptanalysis of [13℄ an also be ombinedin order to faster ompute a leartext from a iphertext, and to �nd more informations on the seretkey. Thus one of the interests of the paper is to improve the ryptanalysis of C�.However, we were not able to �nd the ryptanalysis of all the new shemes. More preisely, whenone round of seret quadrati funtions is ombined with one round of S-boxes, or when two roundsof S-boxes are arefully hidden by aÆne funtions, the seurity of these shemes is surprisinglystill an open problem. Another interest of the paper lies therefore in the highlighting of these newshemes. The main pratial advantage of these shemes is that seret omputations are easy andan be performed in low-ost smartards.Key words: New asymmetri algorithms, multivariate polynomials, di�erential ryptanalysis, eÆ-ient asymmetri algorithms for smartards.Notes:� This paper is the extended version of the paper with the same title published at ICICS'97.� In this extended version, we have taken into aount the reent results of [1℄ and [4℄.1 IntrodutionIn [18℄, Brue Shneier wrote : \Any algorithm that gets its seurity from the omposition of polynomialsover a �nite �eld should be looked upon with skeptiism, if not outright suspiion". Moreover, in thesame page, he also wrote : \Prospets for reating radially new and di�erent publi-key ryptographyalgorithms seem dim". Maybe Brue Shneier is right. Nevertheless we will try in this paper to designnew publi key ryptosystems that get their seurity... from the omposition of polynomials over a�nite �eld ! Moreover, the design of our shemes seems to be amazingly simple... However, we mustsay that we have no proof of seurity for these shemes and we will not be shoked if these shemes arelooked upon with skeptiism, if not outright suspiion.1



We will see that, as expeted, the easier shemes are not seure but for some more omplex shemes(\two-round shemes"), the seurity is still an open problem.It should be notied that the polynomials in the shemes are multivariate polynomials and that BrueShneier's delarations were essentially motivated by results on univariate polynomials. The omplexityresults may be ompletely di�erent for multivariate polynomials. For example, solving a univariatepolynomial equation of small degree d in a �nite �eld is feasible (the omplexity is polynomial in d),but solving a multivariate set of polynomial equations of small degree d in a �nite �eld K is NP-hard,even when K = GF (2) and d = 2 (f [8℄). Or �nding the funtional deomposition of a univariatepolynomial is often easy (see [19℄ and [20℄) but �nding the funtional deomposition of multivariatepolynomials seems to have a omplexity exponential in the number of variables, even with the bestknown algorithms (see [5℄ or [6℄ p. 86). Moreover the general problem of omputing a multivariatepolynomial deomposition is NP-hard (see [5℄ or [6℄ p. 87).In fat, these hard problems are well known motivations to try to design new asymmetri ryptosystemswith multivariate polynomials. In [7℄ a �rst design idea was studied by Harriet Fell and Whit�eld DiÆebut, as they pointed out, their design was not eÆient beause their funtion F and its inverse F�1were multivariate polynomials with the same degree d. In [12℄ Tsutomu Matsumoto and Hideki Imaidesigned a very eÆient sheme (alled C�) with a funtion F of total degree two, suh that thedegree of F�1 was muh larger than two. However this sheme was broken in [13℄ due to unexpetedalgebrai properties. In [14℄ another sheme, alled HFE, was designed by Jaques Patarin to avoidthese unexpeted algebrai properties, but the seret key omputations of HFE are not as eÆient asin the original Matsumoto-Imai sheme C�.The aim of this paper is to introdue and to study \andidate" shemes, whose interest lies in theirvery simple design, and in the very good eÆieny of the seret key omputations. More preisely,the seret key omputations will be easy in low-ost smartards beause very little RAM is neededand beause the number of omputations to be performed is very moderate. The main idea of thoseshemes is to use small S-boxes where some random multivariate funtions of small degree are stored,and to ombine suh a funtion with some seret multivariate funtions of small degree. The publikey is sometimes large, but its length is still polynomial in the length of the messages (moreover, wean expet that seret key omputations are performed on smartards, and publi key omputationsare performed on personal omputers).An important part of the paper deals with the eÆieny of very di�erent ryptanalyti ideas on theseshemes, suh as di�erential ryptanalysis, anonial representation of multivariate polynomials ofdegree two, or aÆne multiple attaks. Moreover we introdue some new ryptanalyti ideas, suh asfor example what we have alled \gradient ryptanalysis". A new attak on Matsumoto and Imai's C�ryptosystem is also desribed: we will see that it is always possible to \separate" the \branhes" ofthe sheme from eah other, whatever their size may be. We will like this be able to reover more ofthe seret key than in [13℄, and to faster ompute leartexts from iphertexts.Although the easier variations of our shemes an be broken by using those ideas, some of our shemesseem to resist ryptanalysis so far, and may therefore be interesting andidates for new and eÆientasymmetri ryptosystems.
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Part ICryptanalysis of One Round Shemes2 One round of S-boxes: desription of the shemesAim of this setionIn setion 2, we introdue the basi priniples of the new shemes we deal with in this paper. Aswe pointed out above, transformations whih are based on algebrai strutures an often be used bythe ryptanalyst to break the sheme. That is the reason we will use S-boxes, whih are supposedto be built with randomly hosen polynomials of small degree, and thus have no algebrai struture.Moreover, the design of the sheme will be suh that the enryption funtion is polynomial with a smalldegree (typially 2 or 4), but its inverse is polynomial with a high degree, and so annot be found byGaussian redutions.Setion 2 is about the simplest way of using these ideas: there will be only one round of S-boxes, hiddenby two aÆne bijetive transformations. However, we will see (in setion 3) that this �rst sheme is notseure, whatever the degree of the S-boxes may be.Desription of the shemesA �nite �eld K, with q = pm elements is publi. For example, we may take K = GF (2), the �nite �eldwith two elements.Eah message will be represented by n elements of GF (q), where n is another publi integer. n is splitinto d integers n1; :::; nd, suh that n = n1 + :::+ nd. For eah e, 1 � e � d, we have a S-box Se whihmaps Kne into Kne , and is given by quadrati polynomials of the ne variables.The seret items will be:1. Two aÆne bijetions s and t from Kn to Kn.2. The separation of n into d integers: n = n1 + :::+ nd.3. The S-boxes: S1; :::; Sd.Let x = (x1; :::; xn) be the leartext, and y = (y1; :::; yn) be the orresponding iphertext. If we havethe serets, then we an obtain y from x as follows (we will see below how to obtain y from x withoutthe serets):1. x = (x1; :::; xn) is �rst transformed with the aÆne seret permutation s into s(x) = a = (a1; :::; an).2. Then we ompute8<: (b1; :::; bn1 ) = S1(a1; :::; an1)::::::::::::::::::::(bn1+:::+nd�1+1; :::; bn1+:::+nd) = Sd(an1+:::+nd�1+1; :::; an1+:::+nd)where for eah e, 1 � e � d, Se is the seret quadrati S-box whih maps Kne into Kne .3. Finally, b = (b1; :::; bn) is transformed with another aÆne seret permutation t, into t(b) = y =(y1; :::; yn).It is easy to see that the omposition of all these operations is still a quadrati funtion of the omponentsof x, so that it an be given by n polynomials of degree two in x1; :::; xn. Eah S-box an be seen as a\branh" of the algorithm.The publi items are:1. The �eld K and the length n of the messages.2. The n polynomials P1,...,Pn in n variables over K.3



So anyone an enipher a message (beause from P1; :::; Pn, anyone an obtain y from x).Moreover, if the seret items are known, a message an be deiphered like this:1. From y = (y1; :::; yn), we ompute b = (b1; :::; bn) = t�1(y1; :::; yn).2. Then we an �nd (a1; :::; an) by looking in a table in whih all the values of the S-box funtionshave been preomputed and sorted in lexiographi order.3. Finally, we ompute x = (x1; :::; xn) = s�1(a1; :::; an).Note 1: The parameters must be hosen so that the tables for the S-boxes are not too large. Forexample, we an take K = GF (2), n = 64 and n1 = ::: = n8 = 8, so that eah table ontains 28 = 256values.Note 2: The S-boxes are not neessarily one-to-one maps. So there may be several possible leartextsfor a given iphertext. One solution to avoid this ambiguity is to put some redundany in the repre-sentation of the messages, by making use of an error orreting ode or a hash funtion (for details, see[14℄ p. 34, where a similar idea is used in a di�erent sheme).Note 3: The sheme an also be used in signature. To sign a messageM , the basi idea is to omputex from y = h(RjjM) (as if we were deiphering a message), where h is a hash funtion and R is a smallpad. If we sueed, (x;R) will be the signature of M . If we do not sueed (beause the funtion isnot a bijetion), we try another pad R (for variants and details, see [14℄, where a similar idea is used).It ould also be notied that, with the variation desribed below (with some quadrati funtions q1, ...,qd), we will have a larger probability to sueed (i.e. we will have to try fewer values R).Note 4: We said that the S-box an be inverted by looking in a table. More preisely, we alwayshave three di�erent ways to invert a S-box:1. Looking in a table.2. Trying all the possible inputs in order to �nd the right ones (\exhaustive searh").3. Solving the polynomial equations of the S-box. Sine the S-box uses only a very small number ofvariables, these equations an often be inverted by algebrai algorithms (whih are not eÆientwith more variables).Note 5: The C� sheme of T. Matsumoto and H. Imai an be seen as a very speial ase of ouralgorithm above, when, in C�, all the ni variables are small (see [12℄ for the de�nition of C� and of theni variables). Therefore, the attaks of the next three setions an be applied against C� with small niparameters, so that we obtain a di�erent ryptanalysis of that sheme. Moreover, this new ryptanalysisis based on the fat that the ni's are small, and not on algebrai properties of the tranformations, suhas in the general ryptanalysis of [13℄.Variation 1 (General S-boxes sheme): The output of the Si box (2 � i � d) an also beXORed with a quadrati funtion qi of the variables (a1; a2; :::; an1+:::+ni�1) before performing the tpermutation, as shown in �gure 1 below. The publi key is still a quadrati funtion of the xj variables,1 � j � n, and the deryption will be done �rst on S1 (it gives a1, ..., an�1), then on S2, ..., and�nally on Sd (i.e. from the left to the right S-boxes). As mentioned in note 3, this variation may havepratial advantages in signature. However, the ryptanalysis of this generalisation will be exatly thesame as if q2 = ::: = qd = 0.Variation 2 (Triangular system exept one S-box at the beginning): In �gure 2, we have a\triangular system exept one S-box at the beginning". This variation is \almost" a permutation, so itmay have some pratial advantages. However, this variation an be broken as the general one roundsheme. 4



as : seret aÆne permutationx : leartext
a1 an1 an1+1 an1+n2 SdS2S1 qd(a1; :::; an�nd)�q2(a1; :::; an1)� bt : seret aÆne permutationy : iphertext

Figure 1: One round of triangular S-boxes (it gives a weak sheme)
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as : seret aÆne permutationx : leartext
an qn�k(a1; :::; an�1)�ak+2q2(a1; :::; ak+1)�ak+1q1(a1; :::; ak)�a1 akS1

bt : seret aÆne permutationy : iphertext
Figure 2: One round of \one S-box followed by a triangular onstrution" (it gives a weak sheme)
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3 One round of S-boxes: Cryptanalysis of the shemes3.1 The Degeneration Problem (DP)As we will see below, the ryptanalysis of the one-round shemes is related to the following problem,that we all the \Degeneration Problem" (DP):Given: A multivariate quadrati equation y = P (x1; :::; xn), where P is of degree two, with nvariables x1, ..., xn.Problem: Find a hange of variables of degree one, from the n variables xi to (at most) n � 1variables x01, ..., x0n�1 (i.e. 8i, 1 � i � n, xi = P 0i (x01; :::; x0n�1), where P 0i is of total degree one), and�nd a polynomial Q of total degree two in (at most) n� 1 variables, suh that: y = Q(x01; :::; x0n�1).As we will see, there are some algorithms with polynomial omplexity for this DP problem, and fromthem a ryptanalysis of the one-round sheme an be found.Remark: However, it an be notied that we did not �nd an algorithm with polynomial omplexityfor the following more general problem, that we all the \Linear Combination Degeneration Problem(LCDP)":Given: A set of k multivariate quadrati equations yi = Pi(x1; :::; xn), where Pi is of degree two.Problem: Find a linear ombination y = kPi=1�iyi suh that, for this linear ombination y, the DPproblem has a solution.3.2 First attak: anonial ryptanalysisIn setion 3.2, we present an attak based on the existene of a anonial representation of the quadratipolynomials involved in the sheme. Let us reall the lassial theorem about the representation ofquadrati forms over a �eld with even harateristi.De�nitions:1. A quadrati form over K is a homogeneous polynomial in K[X1; :::;Xn℄ of degree two, or the zeropolynomial.2. Two polynomials f and g of degree � 2 over K, are said to be equivalent if f an be transformedinto g by means of a nonsingular linear substitution of the indeterminates.3. A quadrati form f in n indeterminates is alled nondegenerate if it is not equivalent to a quadratiform in fewer than n indeterminates.Theorem 3.1 Let f 2 K[X1; :::;Xn℄ be a nondegenerate quadrati form over K = GF (q), where q iseven. If n is odd, then f is equivalent to:x1x2 + x3x4 + :::+ xn�2xn�1 + x2n: (1)If n is even, then f is either equivalent to:x1x2 + x3x4 + :::+ xn�1xn (2)or to a quadrati form of the type:x1x2 + x3x4 + :::+ xn�1xn + x2n�1 + ax2n (3)where a 2 K. 7



A proof of this theorem is given in [11℄. Moreover, if f is given, then the transformation of f in (1),(2) or (3) is very easy.The algorithm used in the proof an also be applied to a degenerate quadrati form, in the same way.For suh a form f , we an de�ne the \number of independent variables of f" as the smallest integer ksuh that f is equivalent to a quadrati form in k indeterminates. Following the algorithm given in theproof of the theorem, we an see that this number k is also very easy to ompute.Using these tools, we an now derive a method to \separate" the S-boxes in the sheme. We use thenotations of setion 2.Desription of the algorithm:1. Generate randomly n bits �1; :::; �n, and ompute:y0 = nXi=1 �iPi(X1; :::;Xn);whih is a polynomial of degree two in X1; :::;Xn.2. Compute the number k of independent variables of y0, and write y0 as a polynomial of degree twoin x01; :::; x0k, where the x0i have an aÆne expression in the xj (1 � j � n).The probability that y0 has no omponents in branh number one, i.e. the probability that y0 has alinear expression in bn1+1; :::; bn1+:::+nd is 1qn1 .So by repeating steps 1 and 2 about �qn1 times, we will generate about � equations y01; :::; y0� suhthat these equations have no omponents in branh number one. Moreover, when this ours, thenk � n� n1, and when this does not our, then the probability that k � n� n1 is very small, exept ifthere are di�erent branhes with about n1 variables. However, it is very easy to see if two polynomialsy01 and y02 with k � n�n1 have no omponents from the same branh: we write y01 in x01; :::; x0k1 and y02in x001; :::; x00k2 , and we see how many terms are linearly independent in x01; :::; x0k1 ; x001 ; :::; x00k2 . If there aremore than n�n1 independent terms, then y01 or y02 has omponents from the �rst branh. And if thereare less than n� n1 independent terms, then we an write y01 and y02 as polynomials of degree two inx0001 ; :::; x000n�n1 , where the x000i have aÆne expressions in the xj (1 � j � n).Note: Another idea would be to ompute the number k of independent variables of y01 + y02 and testif k � n� n1.Finally, after O(qn1) omputations, we will �nd n � n1 independent equations y01; :::; y0n�n1 suh thatthese equations have no omponents oming from the �rst S-box, and we will be able to write all theseequations as polynomials of degree two in x01; :::; x0n�n1 , where the x0i have aÆne expressions in the xj(1 � j � n).So with these new variables x0i and y0i, we have eliminated the variables of the �rst branh. Applyingthis algorithm d times, we an \separate" the S-boxes from eah other and then the sheme is veryeasy to break by simple exhaustive searh on the leartext for eah S-box.3.3 Seond attak: di�erential ryptanalysisWe will now desribe another very di�erent attak, that also works very well against shemes withsmall branhes. Let F = (P1; :::; Pn) the funtion desribed in setion 2. F is seen as a funtion fromKn to Kn. Let  be an element of Kn. Let X1; :::;Xk be k random plaintexts (k = n typially), andY1; :::; Yk be the orresponding iphertexts, i.e. Yi = F (Xi) for i = 1; :::; k. Let Y 0i be the iphertext ofthe plaintext Xi +  , i.e. Y 0i = F (Xi +  ) for i = 1; :::; k. Finally, let  0i = Y 0i � Yi (where the addition+ and the subtration � are of ourse done omponent by omponent in K).De�nition of test (A): We will say that \ satis�ed the test (A)" if the vetor spae generated byall the values  0i is not Kn itself by an aÆne subspae (the dimension of this subspae will be n � �,where � is one of the ni values).It is very easy to see if a value  satis�es this test (A) or not, sine k is very small (k = n typially).Moreover, we have this theorem: 8



Theorem 3.2 The probability that  satis�es the test (A), when  is randomly hosen, is � 1qmax(ni) .Proof: The probability that the value A1 = (a1; :::; an1+1) is the same for Xi and Xi +  is 1qn1(beause we have qn1 possible values for A1). We write this relation as A1(Xi) = A1(Xi +  ).Moreover, sine s is an aÆne funtion, if the A1 value is the same for one pair (X;X + ) for a spei�value X, then for all values X 0, we will have A1(X 0) = A1(X 0+ ). So, with a probability 1qn1 , we have:8Xi 2 Kn; B1(Xi) = B1(Xi +  ):Now, sine the transformation t is aÆne, we see that all the values  0i = Y 0i � Yi = F (Xi +  )� F (Xi)belong to an aÆne subspae of dimension n�n1. We an now desribe our new attak. We proeed in�ve steps.1. We �nd about n values  that satisfy the test (A), by randomly trying some  values.2. We say that two suh values  1 and  2 \belong to the same branh" if  1+ 2 (and more generally�1 1+�2 2, �1 2 K, �2 2 K) also satis�es the test (A). We detet and group together the values i that belong to the same branhes. In this way, we separate the  values in d di�erent groups,that we all \branhes". We will �nd about n1 independent values  that ome from the �rstbranh, n2 that ome from the seond branh, ..., nd that ome from the branh number d.3. By an aÆne hange of variables, we hange the variables xi into x0i suh that, with these newvariables, the subspae generated by the values  of the �rst (resp. seond,..., dth) branh isharaterized by: x01 = ::: = x0n1 = 0 (resp. x0n1+1 = ::: = x0n1+n2 = 0,..., x0n1+:::+nd�1+1 = ::: =x0n1+:::+nd = 0).4. Similarly, by an aÆne hange of variables, we hange the variables yi into y0i suh that, with thesenew variables, the subspae generated by the values  0 of the �rst (resp. seond,..., dth) branhis haraterized by: y01 = ::: = y0n1 = 0 (resp. y0n1+1 = ::: = y0n1+n2 = 0,..., y0n1+:::+nd�1+1 = ::: =y0n1+:::+nd = 0).5. At this point, all the branhes have been deteted and isolated. To omplete the attak, we annow perform an exhaustive searh on eah input of eah of the d branhes.Note: In the seond attak, we did not use the fat that the S-boxes are polynomial funtions ofdegree two in a basis. So the attak will work in the same way whatever the funtions in the S-boxesmay be.3.4 Third attak: gradient ryptanalysisWe now introdue a new tool to attak the sheme with S-boxes. The general priniple of the algorithmis exatly the same as in the �rst attak that we alled \anonial ryptanalysis". It is based on thefat that, with a rather high probability, a linear ombination Q = Pni=1 �iPi(x1; :::; xn) of the publipolynomials has a \number of independent variables" less than n.In the ase of quadrati polynomials, we saw that this \lak" of variables an be deteted beause aanonial form exists, whih enables us to read the \real" number of variables of suh a polynomial.But as soon as the degree is greater or equal than three, we don't have suh a anonial representation.The new idea is to use the so-alled gradient of Q. For x = (x1; :::; xn), it is de�ned by:grad Q(x) = � �Q�x1 (x1; :::; xn); :::; �Q�xn (x1; :::; xn)�:The following theorem shows the link between the gradients of Q and the number of independentvariables of Q:Theorem 3.3 Let Q be a quadrati form in n variables over a �eld K, then:1) If the harateristi of K is > 2, then the number k of independent variables of Q is equal to thedimension of the subspae A generated by all the grad Q(x) (x 2 Kn).9



2) If the harateristi of K is 2, then it is easy to �nd a non singular linear substitution of theindeterminates that transforms Q into a quadrati form:R(x01; :::; x0n) = �(x01; :::; x0dimA) + nXi=dimA+1�ix02i ;where � is a quadrati form over K. Moreover the number k of independent variables of Q is:k = dimA+ � 0 if 8i; �i = 0.1 if 9i; �i 6= 0.The rest of the attak is similar to that desribed in the anonial ryptanalysis. The great di�erenehere is that we an derive the same kind of theorem for ubi forms over a �eld K, and more generallyfor forms of any degree over K.3.5 Fourth attak: linearity in some diretionsThis attak is probably the simplest of all our attaks.As above, the attak is based on the fat that, with a rather high probability, a linear ombinationQ = nPi=1�iPi(x1; :::; xn) of the publi polynomials has a \number of independent variables" less than n.For suh a Q, there are some values d = (d1; :::; dn), d 6= 0, suh that:8x 2 Kn; Q(x+ d) = Q(x): (#)From (#) we will show how to �nd these values d.If xixj is a term of Q(x), then in (#) this xixj gives the term: (xi + di)(xj + dj) � xixj, i.e. it gives:xidj + xjdi + didj.Therefore, by writing in (#) that all the terms in xk, 1 � k � n, are zero, we will have n equations ofdegree one in n variables (there variables are the d� variables). So by gaussian redutions, we will �ndthe set of the solutions d, as wanted.As a result, we have found a break-up into the spaes generated by the S-boxes. By iterating this,we will �nd the break-up into eah of these spaes, and the sheme is very easy to break by simpleexhaustive searh on the leartext from eah S-box.3.6 Linear approximations of the S-boxesA natural idea is of ourse to also try linear ryptanalysis, by linear approximations of the S-boxes.However, we did not see how to use this idea for an eÆient ryptanalysis, even when the S-boxes arepubli. The problem omes from the fat that s and t are very general aÆne bijetions (muh moregeneral than the P transformation.of DES for example), and that they are seret.3.7 ConlusionIn onlusion, one round of small S-boxes does not give seure algorithms. So, for seurity, we must haveeither a transformation that manipulates large values (suh a transformation is thus not exhaustivelystorable in a S-box), or more than one round. We will spei�ally study the ase of small S-boxes withtwo rounds later in this paper.4 How to separate large branhes in the C� shemeAs we mentioned in setion 2 (see note 5), eah of the attaks desribed in setion 3 gives a way tobreak the C� sheme of Matsumoto and Imai, when the ni parameters (whih measure the size of thebranhes) are small. However, this ryptanalysis is deeply based on the fat that the branhes aresmall, and does not give any result in the ase of large branhes.Nevertheless, we have found another attak to separate large branhes in the Matsumoto-Imai sheme,even if they are large. This attak is desribed in the extended version of [13℄ (available from theauthor). 10



Part IIDesign of Two Round Shemes5 Complexity of funtional deompositionAs we saw in setion 3, the sheme whih uses only one round of S-boxes is inseure, and we an useseveral methods to \separate" the branhes from eah other.Then a natural question arises: is it possible to design a more seure ryptosystem by using two roundsof transformations, eah of whih is given by polynomials of degree two ? This leads to the followingproblem:Deomposition problem: Let g and h be two funtions whih map Kn into Kn and whih are givenby polynomials of total degree two in n variables over K. Then f = g Æ h is also a funtion from Knto Kn, and it is given by n polynomials of degree four in n variables over K. Suppose that f is given.Is it omputationally feasible to reover g and h ?A positive answer to that problem would imply that the two rounds an be easily separated fromeah other. So, to break the sheme, we would only have to break two independent shemes given byquadrati polynomials in n variables.That would of ourse make the idea of using two rounds uninteresting. However, the deomposition ofmultivariate polynomials was studied by Matthew Dikerson, who gave an algorithm for the followingproblem:Multivariate left deomposition: Given polynomials f and h1,...,hn in K[X1; :::;Xn℄, and aninteger r, deide if there exists a polynomial g(x1; :::; xn) of total degree at most r that omposes withthe hi's to give f . That is, does there exist a polynomial g(x1; :::; xn) suh thatf(x1; :::; xn) = g(h1(x1; :::; xn); :::; hn(x1; :::; xn))and deg(g)� r ? If so, determine the oeÆients of g.In [5℄, Dikerson presents the best-known algorithm for this problem, whih is polynomial in the degreeof f; h1; :::; hn, but exponential in the number n of variables (note that our deomposition problem iseven harder, beause the hi's are not known).He also shows that the general problem of deomposition of multivariate polynomials is diÆult, beausethe following one is NP-hard:s-1-deomposition problem: Given a moni univariate polynomial f(x) and an integer s, deide ifthere exists an s-1-deomposition of f , i.e. a moni univariate polynomial h of degree s, and a bivariatepolynomial g(y; x) 2 K[Y;X℄ of the form g(y; x) = Qri=1(y + �ix + �i) with �i; �i 2 K̂, an algebraiextension of K, suh that f(x) = g(h(x); x). If so, determine the oeÆients of g and h.There are some reasons to think that the following problem is also NP-hard (f [5℄, problem 14, p. 74):Multivariate deomposition of given degree: Given a polynomial f in K[X1; :::;Xn℄ and somesubset of the following: integers k; r; s1; :::; sk, a polynomial g(x1; :::; xk)2 K[X1; :::;Xk ℄, and polynomi-als h1(x1; ::; xn),..., hk(x1; :::; xn), deide if there exists a funtional deomposition g; h1; :::; hk of f (i.e.f = g(h1; :::; hk)) suh that degg = r, and deghi = si for 1 � i � n. If so, ompute those oeÆients ofg and the hi's whih were not given.Dikerson (see [5℄, p. 75) noties that: \The s-1-deomposition problem seems intuitively easier thanproblem 14. In problem 14, f , g and h are general multivariate polynomials of arbitrary dimension.Furthermore polynomial g takes the polynomial hi as arguments, and we know nothing about the formof g other than its degree. In the s-1-deomposition problem, on the other hand, f and h are bothunivariate polynomials and g is only bivariate. Furthermore, g takes x and not another polynomialas its seond argument. We also know a great deal about the struture of the polynomial g, namely11



that it fators as: g(y; x) = Qri=1(y + �ix+ �i). However, we have tried without suess to redue thes-1-deomposition problem to problem 14."So, it is still an open problem...That is the reason why we propose to base a ryptosystem on two rounds of quadrati transformations.Remark 1: The deomposition problem of this paper onsists in �nding the deomposition of amultivariate polynomial f (of total degree 4 in n variables x1, ..., xn) into two multivariate polynomialsg and h, of total degree 2, suh that f = g Æ h. In a basis, g (and h) are written with about n � n22oeÆients. When we write this equation f = g Æ h in a basis, we obtain about n � n44! equations inthe 2 � n � n22 unknown oeÆients. So we have O(n5) equations of degree total two in the O(n3)unknowns. There is maybe no polynomial time algorithm for this problem (unlike if we had O(n6)equations), but sine the number of quadrati equations is muh larger than the number of unknowns,one an be dubitious about the hanes to rely this problem to an NP-omplete problem. Moreover, thisalso shows that, most of the time, there exists \essentially" one deomposition of f (by \essentially",we do not take into aount all the obvious solutions than an be dedued from one solution, i.e. allthe (g Æ ') Æ ('�1 Æ h), where ' is an aÆne permutation of the variables.Remark 2: In 1999, in the paper [4℄, an algorithm to �nd the deomposition of two multivariatepolynomials of degree two has been published. However, this algorithm needs all the desription of theomposition. So, despite the results of this paper [4℄, we will still be able to design shemes by givingonly part of the omposition, or by \perturbating" the omposition as we will see below.6 Two rounds: A general desription of the shemes (\2R" and\2R�" shemes)The general sheme will be the following one:As in setion 2, a �nite �eld K, with q = pm elements, is publi, and we want to transform a leartextx = (x1; :::; xn) 2 Kn into a iphertext y = (y1; :::; yn) 2 Kn.The seret items will be:1. Three aÆne bijetions r, s and t from Kn to Kn.2. An appliation � : Kn ! Kn given by n quadrati equations over K.3. An appliation  : Kn ! Kn given by n quadrati equations over K.If we have the serets, then we an obtain y from x as follows:1. x = (x1; :::; xn) is �rst transformed with the aÆne seret permutation r into r(x) = a = (a1; :::; an).2. Then we ompute b = �(a).3. b = (b1; :::; bn) is then transformed with the aÆne seret permutation s into s(b) =  = (1; :::; n).4. Then we ompute d =  ().5. Finally, d = (d1; :::; dn) is transformed with another permutation t, into t(d) = y = (y1; :::; yn).The publi items are:1. The �eld K and the length n of the messages.2. Some of the n polynomials P1; :::; Pn of degree four in n variables over K, suh that yi =Pi(x1; :::; xn) (1 � i � n). When all these polynomials are given, we all the sheme a \2Rsheme". When only some of these polynomials are given, we all the sheme a \2R� sheme".12



So anyone an enipher a message.Moreover, if the seret items are known, we must be able to deipher a message. For that purpose, weneed to invert the funtions � and  . In pratie, � and  an be hosen among the following lassesof funtions:1. \C�-funtions": monomials over an extension of degree n over K, suh as a 7! a1+q� (they arethe basi transformations in the C� sheme of Matsumoto and Imai, f [12℄).2. \Triangular-funtions": (a1; :::; an) 7! (a1; a2 + q1(a1); a3 + q2(a1; a2); :::; an + qn�1(a1; :::; an�1)),where eah qi is a quadrati polynomial in i variables overK (in [7℄ Fell and DiÆe used a partiularase of these transformations).Note: If jKj is even, then x 7! x2 is a bijetion on K. So in this ase, we an de�ne as\triangular-funtions" all the funtions (a1; :::; an) 7! (a�11 ; a�22 +q1(a1); :::; a�nn +qn�1(a1; :::; an�1)),where eah qi is a quadrati polynomial, and where eah �i is either 1 or 2.3. \S-boxes-funtions": they have already been de�ned in setion 2, in the ase of a one-roundsheme.4. \One S-box followed by a triangular onstrution": (a1; :::; an) 7! (b1; :::; bn), with (b1; :::; b�) =S(a1; :::; a�) and bi = ai + qi�1(a1; :::; ai�1) for � + 1 � i � n. Here, S, q�, ..., qn are quadratifuntions, and � an be seen as the size of the S-box.5. \Triangular with S-boxes funtions", or \General S-boxes funtions": (a1; :::; an) 7! (b1; :::; bn),with: 8>>>>><>>>>>: (b1; :::; bn1) = S1(a1; :::; an1)(bn1+1; :::; bn1+n2) = S2(an1+1; :::; an1+n2) + (q1(a1; :::; an1); :::; qn2(a1; :::; an1))::::::::::::::::::::(bn1+:::+nd�1+1; :::; bn1+:::+nd) = Sd(an1+:::nd�1+1; :::; an1+:::+nd)+ (qn2+:::+nd�1+1(a1; :::; an1+:::+nd�1); :::; qn2+:::+nd(a1; :::; an1+:::+nd�1)):where the funtions Si and qi are all quadrati over K.6. \D� funtions": the de�nitions and analysis of these D� funtions are the main thema of [16℄.Note: It is easy to see that lasses number 2, 3 and 4 are just partiular ases of lass number 5.The �rst two have the advantage of being bijetions (D� funtions will also be bijetive). But, as wewill see in setions 7 and 8, all the shemes where  is one of the funtions of lasses 1 and 2, areinseure, whatever we may hoose for �. On the ontrary, if the seond round funtion  is hosen inlasses 3, 4, 5 or 6, and the �rst round funtion � in lasses 1, 2, 3, 4, 5 or 6, the orresponding shemesseem to resist ryptanalysis, so far. We all these shemes the \2R" shemes (\2R" stands fro \tworounds").7 Cryptanalysis of a seond round with C�In this setion, we study the sheme desribed in setion 6, when  is a C�-funtion.A typial example of this situation is the ase where � and  are both C�-funtions. As was pointedout by Jaques Patarin (f [15℄), this sheme is inseure. Moreover, the ryptanalysis of [15℄ an beapplied even if � is not a C�-funtion. Whatever the funtion � of the �rst round may be, the basiidea of the attak is to ompute all the equations of the form:Xi;j;k�ijkyixjxk +Xi;j �ijxixj +Xi;j �ijyixj +Xi !ixi +Xi �iyi + �0 = 0and then to introdue some \transition" variables pi suh that these equations an be written:Xi;j ijpiyj +Xi �ipi +Xi �iyi + Æ0 = 0:13



ar : seret aÆne permutationx : leartext
a1 an1 an1+1 an1+n2 SdS2S1 qd(a1; :::; an�nd)�q2(a1; :::; an1)� bs : seret aÆne permutation1 n01 n01+1 n01+n02 S0dS02S01 q0d(1; :::; n�n0d)�q02(1; :::; n01)� dt : seret aÆne permutationy : iphertextFigure 3: Two rounds of triangular S-boxes (suh a sheme may be seure...)14



ar : seret aÆne permutationx : leartext
an qn�k(a1; :::; an�1)�ak+2q2(a1; :::; ak+1)�ak+1q1(a1; :::; ak)�a1 akS1

s : seret aÆne permutationb
n q0n�k0(1; :::; n�1)�k0+2q02(1; :::; k0+1)�k0+1q01(1; :::; k0)�1 k0S01

dt : seret aÆne permutationy : iphertext
Figure 4: Two rounds of \One S-box followed by a triangular onstrution" (suh a sheme may beseure...) 15



When the yi variables are given, then from these equations we an ompute the pj variables by Gaussianredutions. Finally, we an dedue x from the pj by using:1. The ryptanalysis of the C� sheme (f [13℄) if � is a \C�-funtion" (this is exatly the situationof [15℄).2. A ryptanalysis similar to the one desribed in setion 8, if � is a \triangular-funtion".3. The ryptanalysis of one round of S-boxes (see setion 3), if � is a \S-boxes-funtion".8 Cryptanalysis of a seond round with a triangular-funtionHere, we onsider the sheme of setion 6, when  is a \triangular-funtion". More preisely, we have:(d1; :::; dn) =  (1; :::; n) = (1; 2 + q1(1); :::; n + qn�1(1; :::; n�1));where q1; :::; qn�1 are quadrati polynomials.One more, that sheme is inseure. The key idea is to use the fat that the equation d1 = 1 gives anequation of degree only 2 in the xi variables, and that, for eah i, 1 � i � n, i an be obtained fromdi and 1; :::; i�1. An attak an be derived as follows:1. By Gaussian redutions on the �i, �ij , i and Æ variables below, �nd the equations of the form:Xi �iyi =Xi Xj �ijxixj +Xi ixi + Æ:The vetor spae of the solutions has dimension one (beause the solutions ome from d1 = 1),so that we obtain d1 =Pi �iyi and 1 =PiPj �ijxixj +Pi ixi + Æ.2. By Gaussian redutions on the �0i, �0ij , 0i and Æ0 and on the oeÆients of q1, �nd the equationsof the form:Xi �0iyi =Xi Xj �0ijxixj +Xi 0ixi + Æ0 + q1�Xi Xj �ijxixj +Xi ixi + Æ�:The vetor spae of the solutions has again dimension one (beause the solutions ome fromd2 = 2 + q1(1)). We thus obtain d2 = Pi �0iyi and 2 = PiPj �0ijxixj +Pi 0ixi + Æ0. We alsoobtain q1.By repeating this argument n times, we have �nally found 1; :::; n as quadrati polynomials in x1; :::; xn.What remains is to ryptanalyse the �rst round, i.e. the funtion  = s Æ � Æ r(x), and that is feasiblefor eah of the possible hoies for � (see setion 3).9 Seond round with S-boxes: desription of the shemesIn this setion, we present our andidate algorithms. They are all based on the general sheme desribedin setion 6. As we said in setion 6, four possibilities exist for the seond round funtion  . We hoose as a \S-boxes-funtion", or as \one S-box followed by a triangular onstrution" or as \S-boxesombined with a triangular onstrution", or as a \D� funtion" (D� funtions are treated in [16℄ andnot in this paper). The algorithms are also di�erentiated from eah other by the hoie of the �rstround funtion �.As we said before, six possibilities exist for �:1. � is a \C�-funtion".2. � is a \triangular-funtion".3. � is a \S-boxes-funtion". 16



4. � is \one S-box followed by a triangular onstrution".5. � is a \Triangular with S-boxes funtion".6. � is a \D� funtion" (D� funtions are treated in [16℄ and not in this paper).Figure 3 illustrates the example with two rounds of \S-boxes ombined with a trangular onstrution".Similarly, �gure 4 illustrates the example with two rounds of \one S-box followed by a triangularonstrution".In the design of these shemes, the main idea is to hide the quadrati funtion � (whih is weak whenused alone, as we saw in setion 3) with the seond round  . For instane, in the ase of \C�-S-box",the algebrai struture of the C�-funtions (whih is not ompletely hidden in the sheme of Matsumotoand Imai, whih led to the ryptanalysis of their sheme) seems diÆult to reover if it has been mixedwith S-boxes, whih are supposed to have no speial struture. This point will be detailed in setion10.3.Moreover, as we pointed out, the problem of deomposition of multivariate polynomials seems to bediÆult, so probably no general attak exists to \separate" the two rounds from eah other.In onlusion, the seurity of our shemes is an open problem...Note: When the �rst round is a \C�-funtion" and the seond round is a \S-boxes-funtion", thesheme may be seure, but it beomes inseure if the two quadrati funtions are put the other wayround, as we saw in setion 7. This shows that the analysis of the seurity losely depends on the orderof the quadrati funtions used in the shemes.10 Remarks about the seurity of these 2R (\two round") shemes10.1 The \Quadrati Degeneration Problem" (QDP)As we have seen in setion 3, the seurity of the one round shemes is related to the DP problem.Similarly, the seurity of the two round shemes seems to be related to the following problem, that weall the \Quadrati Degeneration Problem" (QDP).Given: A multivariate equation of total degree four, y = P (x1; :::; xn), where P is of degree four,with n variables x1, ..., xn.Problem: Find (at most) n� 1 polynomials of total degree two, P 01, ..., P 0n�1, and a polynomial Qof total degree two, suh that: � 8i; 1 � i � n� 1; x0i = P 0i (x1; :::; xn)y = Q(x01; :::; x0n)We do not know if an algorithm with polynomial omplexity exists for this problem (when a solutionexists). So we do not know how to ryptanalize the general two-round shemes.Remark: In the problem above, we have to �nd n� k polynomials P 01, ..., P 0n�k, with k = 1. Whenk = 0, this is the deomposition problem (of a multivariate polynomial of total degree 4). If the problemis easy for k = 1, or for k = 2, or for k = 3 for example, then it would give a ryptanalysis of two-roundshemes, and this problem may indeed be easier for k = 1, or k = 3, than for k = 0.10.2 E�et of the gradient ryptanalysisThe method we desribed in setion 3.4, in order to ryptanalyse one round of S-boxes, an be extendedto the ase of two rounds. But, fortunately or unfortunately, it does not seem to lead to a pratialattak against our shemes. Let us desribe the idea.We use the notations of setions 6 and 10.1. Let us onsider h = s Æ� Æ r, whih is given by n quadratipolynomials h1; :::; hn in n variables over K. Let f = Pi �iPi, where the �i's are randomly hosen inK, and let g =Pi �i(t Æ  )i, so that f = g Æ h. 17



We suppose for simpliity that the sizes of the S-boxes of  are n1 = ::: = n8 = 8. Then, with aprobability 128 = 1256 , g has no omponents from the �rst S-box. An easy alulation then gives:grad f(x) = nXr=1 �g�r (h(x)) grad hr(x) = nXr=9 �g�r (h(x)) grad hr(x):Therefore, grad f(x) lies in the subspae generated by (grad h9(x); :::;grad hn(x)), and that is truefor any x = (x1; :::; xn) in Kn. So we may dedue the following equalities:8>><>>: det(grad f(x);grad h2(x); :::;grad hn(x)) = 0det(grad h1(x);grad f(x);grad h3(x); :::;grad hn(x)) = 0:::det(grad h1(x); :::;grad h7(x);grad f(x);grad h9(x); :::;grad hn(x)) = 0Let (�1)i0+j0�i0j0(x) be the value of the determinant of the matrix � �hi�xj (x)� 1�i6=i0�n1�j 6=j0�n . Then theequations beome the eight following:nXj=1�ij(x) �f�xj (x) = 0 (1 � i � 8);where �ij(x) is unknown and is polynomial of total degree n � 1 in x. We may imagine using a lotof di�erent values of x to obtain relations between the oeÆients of the polynomials �ij(x), but thistask seems to be impratial, due to the very high degree of these polynomials.Note 1: In the ase of one round of S-boxes, the attak works, beause the orresponding �ij areonstant polynomials. Thus we obtain about 8n equations about the 8n unknown �ij , by trying aboutn di�erent values of x. The �ij an then be found by Gaussian redutions.Note 2: One again, the sheme seems to resist this attak beause the inverse of the quadratifuntions that we use, has a high total degree in x.10.3 E�et of the aÆne multiple attakAnother attak, whih is very general, was desribed in [14℄. It an be used against shemes based ona univariate polynomial transformation hidden by seret aÆne bijetive transformations.This attak is based on the following fat: if f is a univariate polynomial over a �nite �eld K, then byusing a general algorithm (see for example [3℄), we an ompute an \aÆne multiple" of the polynomialf(x)� y, i.e. a polynomial A(x; y) 2 K[X;Y ℄ suh that:1. Eah solution of f(x) = y is also a solution of A(x; y) = 0.2. A(x; y) is an aÆne funtion of x.We will now see that, beause of the aÆne multiple attak, we annot hoose n1 = ::: = nd = 1 in ourshemes, i.e. eah S-box must have at least two elements of K as input and output.� Suppose �rst that K has q = 2m elements and that n1 = ::: = nd = 1 (for example m = 8, n = 8and d = 8). Eah S-box Se is given by a univariate quadrati polynomial over K = GF (2m).If m = 1, then the ryptanalysis is obvious: the quadrati polynomial is in fat an aÆne funtion(beause x2 = x if GF (2)), and thus t Æ  Æ s is itself a seret aÆne funtion, so that the shemean be broken as a one-round sheme, and so an be easily broken.If m > 1, then the same attak an also work as follows. The publi equations are given overK = GF (2m), but the ryptanalyst an rewrite them over GF (2), so that the previous attakapplies, with mn publi equations of degree 2 over GF (2), instead of n publi equations of degree4 over GF (2m). 18



� Suppose now thatK has q = pm elements, where p is a small prime, p 6= 2. Sine the harateristiis not 2, the S-boxes annot be seen as aÆne funtions any more. However, we an use here theaÆne multiple priniple to attak the sheme.Let fe(x) = �ex2+�ex+e be the univariate quadrati polynomial stored in Se (1 � e � d), andlet Ae(x; y) be an aÆne multiple of fe(x) � y. If all the exponents in y are � k, then there willbe an attak with a Gaussian redutions on O(n1+k) terms. Moreover, sine p is small, k is alsosmall, so that this attak is eÆient.Example: We take p = 3. An easy alulation gives Ae(x; y) = �2ex3 � (�ey + �2e � �ee)x +�e(y � e). Then, by Gaussian redutions, we ompute all the equations of the form:Xi;j;k�ijkyixjxk +Xi;j �ijxixj +Xi;j �ijyixj +Xi !ixi +Xi �iyi + �0 = 0and we an then proeed as in setion 7.In onlusion, we do not reommend using S-boxes given by a univariate polynomial of degree 2 overK.Note If we have for example K = GF (2), n = 64 and n1 = ::: = n8 = 8, we an imagine a similarattak, if we onsider that eah S-box Se an be given as a univariate polynomial over GF (28). Butit is impratial, beause this polynomial fe is generally of very high degree (about 256), and most ofthe time, the degree of Ae(x; y) in y beomes very high too. Therefore, the Gaussian redutions is notfeasible any more.11 How to hoose the parameters and smartard implementationsLet K = GF (2m) (K is not neessarily of harateristi 2, but for simpliity we will assume that it isso; moreover the omputations are a little easier in harateristi 2). Let n be, as usual, the lengthof the leartext x or of the iphertext y (i.e. x 2 Kn and y 2 Kn). Let F be one of our andidatealgorithms (with publi polynomials of degree four).We reommend hoosing m and n suh that:�mn � 128 (C1)n � 12 (C2)We also reommend to not publish in the publi key all the equations of the omposition (i.e. to havea \2R�" sheme). (C3)Condition (C1): To avoid exhaustive searh on the leartext x, we need mn � 64. Moreover, EliBiham found an attak, based on the \birthday paradox" that shows that we need in fat mn � 128.This attak is desribed in Appendix 1.Condition (C2): When n is very small (n < 8 typially), then to solve a set of n polynomialequations of small total degree d (d � 4 for example) with n variables in a �nite �eld K is feasible withad ho tehniques (for example with GCD of polynomials, Gr�obner bases, or by exhaustive searh onsome of the variables). Moreover, this is often easy even when K is large (beause here n is very small).So, in order to avoid these attaks, we must have n � 8. Moreover, for polynomial equations of totaldegree d = 2, we reommend for seurity to have n � 16, even if it is not yet lear if these attaks areeÆient when 8 < n < 16. Similarly, for polynomial equations of total degree d = 4, we reommendfor seurity to have n � 12, even if it is not lear if these attaks are eÆient when 8 < n < 12. (Thisgives the ondition (C2)).Condition (C3): Condition (C3) is here to avoid a nie idea from [4℄ that may reate an eÆientdeomposition algorithm. This idea is desribed in Appendix 2.19



Note: Instead of (C3), another way to avoid the results of paper [4℄ is to introdue a \perturbation"in the originally publi equations, as it was suggested in [17℄ for the C� sheme. These \perturbations"an onsist in introduing extra variables (it will give a 2RV sheme), �xing some variables (it willgive a 2RF sheme), mixing the equations with truly random ones (it will �ve a 2R+ sheme), et.Moreover, all these \perturbations" an be ombined (it gives a 2R�+VF sheme). See [17℄ for moredetails. (In [17℄, these ideas are used and studied in the ase of a C� sheme).Speed: Our shemes are very fast in seret key omputations (more than 100 times faster than a 512bits RSA for example). However, our shemes may be slower in publi key omputations omparedwith a 512 bits RSA with a small publi exponent e.Length of the publi key:� If m = 1 (i.e. K = GF (2)), then the length of the publi key is huge: it is 162 Mbytes withn = 128.� If m = 4 (i.e. K = GF (16)), then the length of the publi key is more realisti: it is 920 Kbytesif n = 32.� Moreover, if r, s and t are linear (not only aÆne), and if the S-boxes are homogeneous, thenthe publi polynomials will be homogeneous. If m = 4, the length of the publi key is then 818Kbytes if n = 32.� If K = F257 or K = F256 and n = 16, then the length of the publi key is only ' 20 Kbytes.� It might also be possible to hoose r, s, t and the S-boxes as polynomials with values in a sub�eldK 0 of K. For example, if K = GF (16) and K 0 = GF (2), then the publi key is divided by 4: itslength is now 205 Kbytes if n = 32. Moreover, if K = F256, K 0 = GF (2) and n = 16, then thelength of the publi key is only ' 2:5 Kbytes. It is not yet lear if this dereases the seurity ofthe sheme or not.So, if m 6= 1, the shemes an have a reasonable length for the publi key, despite the degree four ofthe publi polynomials.Smartard implementations, seret key omputations: The seret omputations are very easyand very fast in a smartard. The RAM needed when mn � 128 is about 32 bytes. The ROM neededfor the program whih omputes F is also very moderate. The seret funtions r, s and t an be storedin EEPROM or be omputed from a seret seed of 64 bits stored in EEPROM. If the S-boxes have verysmall inputs, they an be stored in EEPROM, or even in ROM if all the ards have the same S-boxes.For example, if a S-box takes 8 bits in input and gives 8 bits in output, it will be stored in 256 bytes.We may also have the S-boxes all the same, or suh that eah S-box Si an easily be omputed from S1and/or a small seret seed (if the S-boxes have larger inputs, for example 16 bits in input and 16 bits inoutput, then the S-boxes might be reomputed and the inversion might require some small polynomialresolutions). As we an see, the parameters an be hosen in order to have very eÆient seret keyomputations in smartards.Smartard implementations, publi key omputations: A smartard an ompute F at leastas easily as F�1 when F is its own funtion, i.e. when it uses its seret values to ompute F and F�1.The publi key is then not needed to ompute F and F�1. In some appliations, the smartard doesn'thave to make publi key omputations (whih are then done in a PC for example), but only seret keyomputations. In this ase, our shemes are very eÆient. However, in some appliations, the publikey is required (for example we may ask for a stored and signed publi key). As we have seen above,in some implementations, we may have a publi key of 7.5 Kbytes (in 1996, some smartards an store8 Kbytes of EEPROM, or more), but for most of the shemes, the publi key is larger than that, andit will then not be possible to store it in the smartard. In this ase, and if the publi key must begiven, we an imagine that the signed publi key is stored in another devie than the seure hip of theard, for example in an opti storage on the ard... Or, if we have a lot of time to ompute the publi20



key, the ard will ompute and give some spei� leartext/iphertext pairs (it will hoose these pairsof ourse), and by Gaussian redutionss, the publi key will be omputed outside (however, this mighttake a long time !). So, as we an see, the publi key an be stored only in very few ases, and mostof the shemes are very eÆient in smartards, when only seret key omputations are required in thesmartard.12 Conrete examples of S-boxesAttaks on Matsumoto-Imai like ryptosystems often rely on the existene of general relations betweenthe inputs xi and the outputs yj , that we an lassify as follows:Type 1 relations: P ijxiyj +P�ixi +P�iyi + Æ0 = 0:Type 2 relations: P ijxiyj +P�ijyiyj +P�ixi +P�iyi + Æ0 = 0:Type 3 relations: P �ijkxiyjyk +P ijxiyj +P�ijyiyj +P�ixi +P�iyi + Æ0 = 0:In order to avoid generalisations of these attaks against our two round shemes, we will selet S-boxessuh that no type 1, 2 or 3 relations exist (exept 0 = 0 or obvious relations suh that yi = y2i in F2).Niolas Courtois did for us some simulations in order to see if there are some small S-boxes withoutany type 1, 2, 3 relations. The results of these simulations are given in Table 1, Table 2 and Table 3.Note: In table 1, table 2 and table 3, � is by de�nition the number suh that the S-boxes take �elements of the �eld Fq in input and give also � elements of Fq in output.� 2 3 4 5 6 7 8 9 10 11F2 6= 0 6= 0 6= 0 6= 0 7 991 0 0112 0 0114 0 078 0 00F4 6= 0 6= 0 6= 0 0 084 0 00F8 6= 0 0 6105 0 011 0 00F16 6= 0 0 850 0 00F32 26 60250 0 1040 0 00F64 6= 0 0 1248F128 6= 0 0 1456Table 1: some results obtained in harateristi 2Legend:type 1 type 2type 3 : means that we found at least one S-box with those numbers of independent equations.6= 0 : means that we did not �nd a S-box with 0 equations of type 1.: we did no simulations but we expet no equations of type 1, 2, 3 for most of the S-boxes21



Examples:� For � = 10 and F2, we found a S-box with 10 bits in input and 10 bits in output, where no type1, 2 or 3 equations exist.� For � = 4 and F16, we found a S-box with 4 elements of F16 in input and 4 elements of F16 inoutput, where no type 1, 2 or 3 equations exist.� 2 3 4 5F3 2 410 0 114 0 09 0 00F9 2 414 0 01 0 00F27 3 321 0 00Table 2: some results in harateristi 3� 1 2 3F5 0 11 0 00 0 00F7 0 00F17 0 00F251 0 00Table 3: some results in harateristi � 5Conlusion: Even when � is very small, we an �nd some S-boxes with no type 1, 2, 3 equations.This is nie, sine large values of � mean more omplex S-boxes, and ould imply larger publi keys.The example given in setion 11, with n = 16 and K = F16 (with a publi key of 30 Kbytes) an beobtained with 4 S-boxes, eah of whih has 4 elements of F16 in input and output, and where no type1, 2, 3 relations exist.13 Is it possible to have bijetive S-boxes ?A natural question is the following: is it possible to use bijetive S-boxes in our shemes ?A �rst idea is using onstrutive methods to build bijetive S-boxes. Unfortunately, suh methods havealways given the possibility of an attak of the sheme, so far (for example with C� or triangular-funtions).If the probability of being bijetive were not too small, we ould randomly generate funtions with asmall degree, and thus �nd some of them whih are bijetive and have no spei� struture (for example,this seond idea works for funtions of degree 1). When the degree is � 2, obtaining an aurateevaluation of the probability of being bijetive is diÆult. But, if we suppose that this probability isabout the same as for randoms funtions, it may be shown (see below) that building bijetive S-boxeswith this method gives a huge publi key for our shemes.A new method for building eÆient and strong bijetive S-boxes with small degree may be disoveredsome day, but at the present, all known methods give not eÆient or weak bijetive S-boxes.
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Rough evaluation of the number of \strong" bijetive S-boxesThe problem : We would like to know if some \strong" bijetive S-boxes exist, i.e. some funtionsf from GF (2n) to GF (2n) (2 � n � 32), suh that :1. f is a bijetion.2. When we onsider GF (2n) as a vetor spae of dimension n over GF (2), then in a basis, f isgiven by n polynomials of degree � d (for us, d = 2 or d = 3).3. f is \strong", i.e. the \onstrution of f" does not give any obvious weakness for the seurity ofour shemes (we will give more details about this point below).For example, with a triangular onstrution, or with a Matsumoto-Imai C� onstrution, we an veryeasily design a funtion f that satis�es 1 and 2. However, the onstrution of f gives a way to attakthe shemes. This omes from the fat that, if f(x) = y, where x = (x1; :::; xn) and y = (y1; :::; yn),and yi = Pi(x1; :::; xn) (1 � i � n), then in these onstrutions, there are some polynomial equationsQi(x1; :::; xn; y1; :::; yn) = 0 of small total degree, and of degree one in the xi variables. More generally,we do not want either to have equations Qi(x1; :::; xn; y1; :::; yn) = 0 of small total degree, exept sumsof produts of the publi equations by polynomials of small total degree (i.e. exept the polynomialsof the ideal of K[x1; :::; xn; y1; :::; yn℄ generated by the publi equations).When this ours, we will say that the \onstrution of f" gives a weakness, and if this does notour, we will say that f is a \strong" bijetion. So, do strong bijetions exist (for d = 2 or d = 3 forexample) ?First evaluation : Let �n be the probability for a funtion from GF (2n) to GF (2n) to be a bijetion.Let Hd be the number of funtions from GF (2n) to itself, that are given by polynomial equations ofdegree � d in a basis over GF (2). Then, in a �rst evaluation, we may think that the number of \strong"bijetions from GF (2n) to GF (2n) of degree � d is about �nHd. This omes from the fat that, in a�rst evaluation, we may suppose that most of the bijetions are \strong" and that the density of strongbijetions in Hd is perhaps about the same as the density of strong bijetions in the set of all funtionsfrom GF (2n) to GF (2n).An easy alulation gives :�n = (2n)!2n:2n ; H2 = 2n(1+n+n(n�1)2 ); H3 = 2n(1+n+n(n�1)2 +n(n�1)(n�2)6 ):Let N = 2n. The Stirling formula N ! � NNe�Np2�N gives :�n = N !NN ' e�Np2�N:Example 1 : Let n = 10. Then N = 1024 and �10 ' 121471 , H2 = 2560, H3 = 21760. Sine �10H2is muh smaller than 1, in �rst approximation, we expet to have no \strong" bijetions of degree twoover GF (210). Moreover, sine �10H3 ' 2289, in �rst approximation, we expet to have about 2289\strong" bijetions over GF (210), of degree three (in a basis).Example 2 : Let n = 6. Then N = 64 and �6 ' 1288 , H2 = 2132. Then, in this �rst evaluation,we may expet to have about 2132288 = 244 \strong" bijetions over GF (26), of degree two in a basis.However, we will see now that this is probably not true.Seond evaluation : If f is a \strong" bijetion and if g and h are two aÆne bijetive funtions,then f 0 = g Æ f Æ h is also a \strong" bijetion. Moreover, there are exatlyqn(n+1)h�1� 1q��1� 1q2�:::�1� 1qn�i23



bijetions from GF (qn) to GF (qn) that are aÆne over GF (q). So, sine we have exatlyC = 22n(n+1)h�1� 12�:::�1� 12n �i2possibilities for (g; h), we see that if the numberB of \strong" bijetions (obtained in the �rst evaluation)is muh smaller than C, then is does not mean that there are \about B" strong bijetions, but it means,in this seond evaluation, that we expet to have no suh bijetion.Examples :� In our example 1 above, C ' 2217 and sine 289 > 217, we expet indeed to have about 2289\strong" bijetions of degree three, as laimed. These bijetions of degree three are expeted toome from about 272 bijetions fi of degree three, and to be of the form g Æ fi Æ h, where g and hare two aÆne bijetions.� However, in our example 2 above, we have C ' 281, and sine 44 < 81, we expet to have nostrong bijetions of degree two with n = 6 (if we had one, then there would exist at least about281 suh bijetions).Results : With our \seond evaluation", the results are :� No \strong" bijetive funtions of degree d = 2 are expeted to exist.� \Strong" bijetive funtions of degree d = 3 are expeted to exist if and only if n � 10.� \Strong" bijetive funtions of degree d = 4 are expeted to exist if and only if n � 13.� \Strong" bijetive funtions of degree d = 5 are expeted to exist if and only if n � 16.So, if we want to design a bijetive sheme with omposition of a quadrati funtion h and a bijetivefuntion g made with bijetive S-boxes, g will have to be of degree d � 3, and therefore F = g Æ hwill be of degree � 6. However, a funtion F of degree 6 from GF (2n) to GF (2n) will have a publikey of 635 Mbytes if n = 64. This is too large for all pratial appliations (at least at the present !).So, if this seond evaluation is valid, we an onlude that we will not have bijetive S-boxes in ourtwo-round shemes.Note : More preisely, we an onlude that this \seond evaluation" shows that there are probablyno strong bijetive S-boxes of small degree for \random reasons". However, there may be some for\strutural reasons", i.e. the hypothesis that the strong permutations are almost randomly distributedin the subset of multivariate funtions of total degree d, may be false. For example, the probability fora linear funtion to be a permutation is muh higher than the probability for a random funtion to be apermutation. So, some strong bijetive S-boxes may exist despite our evaluations. In this appendix, wehave just studied two \�rst evaluations" based on a random distribution hypothesis, but this hypothesismay be wrong, and some onstrutions for strong permutations of small degree may still exist.14 Comparison with symmetrial ryptosystemsThe ryptosystems we study in this paper have a lot of similarities with lassial symmetri ryptosys-tems (suh as DES for instane), sine they use for example S-boxes (i.e. loal transformations of asmall number of values), followed by linear transformations, and there are several rounds (two for ourshemes). However, DES for instane (f [2℄), or Khufu (f [9℄) are not seure when only very fewrounds are used. So, why do our shemes (with only two rounds) resist lassial attaks ? This an beexplained by the following arguments:1. In eah round that uses S-boxes, all the input bits are transformed, and not only half of them, ashappens in a Feistel sheme, suh as the one used in DES.24



2. The aÆne transformations are seret, and that is not the ase for the P transformation of DES,whih is publi.3. Moreover, the aÆne transformations are very general, i.e. every output bit is a linear ombinationof all the input bits, and not only of one input bit, suh as in the P transformation of DES.4. In our shemes, the S-boxes an be seret or publi. In DES, they are publi, and in Khufu theyare seret.Note 1: R. Rivest reently proposed XDES, whih is a omposition of DES, an initial simple aÆneseret transformation, and a �nal one (more preisely, these transformations onsist in XORing theinput with a seret value). Maybe this hange does not strengthen DES against di�erential of linearryptanalysis, but it seems to prevent other attaks (in partiular, against exhaustive searh on thekey, f [10℄). So, XDES may illustrate the idea that omposing an enryption algorithm with initialand �nal aÆne seret transformations, may lead to a signi�ant strengthening of this algorithm.Note 2: In our shemes, it is very important to have only two rounds, beause the omposition ofthree rounds, eah round being quadrati, would lead to polynomials of degree eight, so that the lengthof the publi key would be muh too large for pratial appliations.15 ConlusionIn this paper, we have studied new asymmetri algorithms whih all rely on the idea of using one ortwo rounds of very simple quadrati transformations, whih are hidden by seret aÆne tranformations.By \very simple" quadrati transformations, we mean quadrati transformations given by a triangularset of equations, or given by quadrati and small S-boxes. When there is only one round like this,or when the seond round is built with funtions whose algebrai struture is poorly hidden, we haveproven that the orresponding shemes are inseure. From these ideas, we were able to design somenew ryptanalysis of the Matsumoto and Imai sheme C�.However, when the parameters and the quadrati polynomials involved in eah round are arefullyhosen, we still have andidate algorithms that seem to resist the attaks. In this paper, the mainharateristi of these shemes is that, in the seond round, they use S-boxes, whih are given bymultivariate polynomials of small degree, and are randomly hosen in order to avoid any simple algebraistruture.Sine the publiation of these algorithms at ICICS'97, two ryptanalysis papers ([1℄ and [4℄) have beenwritten on these algorithms. Due to [1℄, it is neessary that the input of the shemes has at least 128bits. Due to [4℄, it is reommended to not publish all the originally publi equations.When all this is done, are these algorithms seure ? If they are, it would be a surprising and easy wayof designing asymmetri ryptosystems. If they are not, it would strengthen the idea that the messagesannot be split in small branhes, but must be transformed in a global way, and therefore that we needalgebra to build seure asymmetri ryptosystems.So the question remains open...
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Appendix 1An attak of Eli Biham based on the birthday paradox (f [1℄)Introdution: Eli Biham found an attak of the sheme based on two rounds of S-boxes with aomplexity about O(pqn) (instead of O(qn)) for exhaustive searh of one leartext). Moreover, afterhis attak, it is possible to deipher very fast any iphertext (not only one). At ICICS'97, we gaveexamples with qn � 2128, so that Eli Biham's attak is not very eÆient against our published shemes,but however this attak is very interesting beause it illustrates (one more time) the eÆieny inryptanalysis of the \birthday paradox" and it shows that for shemes based on two rounds of S-boxeswe really need qn � 2128. (In the HFE shemes of [14℄, di�erent ways of having a sheme with qn ' 264are explained. These ways of having qn ' 264 should not be generalized in the ase of two rounds ofS-boxes.)The idea: The idea is to use the fat that two inputs that di�er only for one S-box will give thesame output (i.e. a ollision) if they have the same output for this S-box.The starting point of the attak is to searh for a ollision f(a) = f(b), and then to randomly hoosevalues i's and searh for (about 100) ollisions f(i � a) = f(i � b). From these ollisions, we willhave a way to detet the �rst seret linear transformation and the S-boxes of the �rst round.Appendix 2An attak (from [4℄) for the deomposition problemIn [4℄, an algorithm is suggested for omputing the deomposition of two quadrati multivariate poly-nomials. The eÆieny of this algorithm relies on two hypotheses. No simulations have been done sofar on this algorithm, so it is not easy to evaluate the probablity of the algorithm to sueed (i.e. whenthe two hypotheses are valid). However, this algorithm looks suÆiently dangerous to reommend tonot publish all the equations of a omposing h = f Æ g in the publi key of the 2R shemes desribedin this paper.Notations: Let h = f Æg, when f and g are two quadrati funtions from (Fq)n to (Fq)n. In a basis,g is given as (g1; :::; gn), where gi, 1 � i � n is a funtion from (Fq)n to Fq.Aim of the algorithm: The aim of the algorithm is to �nd the vetor spae G generated by g1, ...,gn, i.e. G =Vet(g1; :::; gn). From G, it is then easy to �nd a deomposition of h. Sine h = f Æ g, h isalso equal to (f Æ A�1) Æ (A Æ g), where A is any linear and bijetive funtion from (Fq)n to (Fq)n.Remark: G is a vetor spae of dimension about n and G is inluded in the vetor spae of dimensionabout n22 of all the quadrati polynomials from (Fq)n to (Fq)n.How to ompute G: Let V = n nPi=1xiGo. (Remark: V is a vetor spae of dimension about n2and V is inluded in the vetor spae of dimension about n36 of all the ubi polynomials from (Fq)nto (Fq)n.)To ompute G, the algorithm uses two hypotheses:Hypothesis 1: V = Vet��hi�xj �:When this hypothesis 1 is true, then we an ompute V , sine h is given.27



Hypothesis 2: G = fpolynomials r of degree 2 suh that: 8i; 1 � i � n; xi � r 2 V g:When this hypothesis 2 is true, then we an ompute G sine this hypothesis 2 will give relations ofdegree one on the oeÆients of r.Remark: To avoid problems suh that x4i = xi or x3i = xi or x2i = xi, the authors of [4℄ make thehypothesis that q � 5.
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