
TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computing Science

MASTER’S THESIS
Algebraic Attacks from a Gröbner Basis Perspective

by

A.J.M. Segers

Eindhoven, October 2004

Supervisor:
Prof. dr. ir. H.C.A. van Tilborg

Advisors:
Dr. B.M.M. de Weger

Drs. G. Schmitz
Dr. ir. P.A.H. Bours

Abstract

Recently, a special kind of cryptanalysis coined as the algebraic attack has
gained a lot of attention. In this thesis, we clarify this attack and discuss the
threat to common ciphers. Among the known attacks, one can roughly distinguish
between two classes. The first consists of structural attacks that focus on specific
properties of a certain cipher. The second includes inversion attacks, which are
general purpose algorithms that solve multivariate systems of equations. In this
thesis we focus on the latter.

The different methods appear to be reducible to Gröbner Basis techniques,
an area of algebraic geometry that is understood reasonably well. This report
focusses on three topics. Firstly, we introduce a variety of common ciphers and
discuss advanced techniques based on Gröbner Bases to cryptanalyze these ciphers.
These are implemented in Magma and presented to the reader. Secondly, the much
discussed cryptanalytic tool XL is shown to be related to methods based on Gröbner
Bases. And lastly, this report discusses a complexity approximation of XL based
on Hilbert series.

3

Preface

This report is the result of my graduation project in completion of the Master
of Science program Industrial and Applied Mathematics at the Eindhoven Univer-
sity of Technology. The project has been carried out at the Netherlands National
Communications Security Agency, which is part of the General Intelligence and
Security Service in Leidschendam.

The algebraic attack has drawn a lot of attention in recent years and is still a
very active area of research in cryptology. Papers that discuss the potential threat
to cryptosystems range from very thorough to sketchy. This means that it is hard
to get a complete overview on the matter. This thesis aims to explain algebraic
attacks from the ground up, while paying attention to both the theoretical and the
practical aspects.

The thesis shows that algebraic attacks are strongly related to Gröbner Basis
techniques and studies the algorithms F4, F5 and XL. These are regarded as some
of the most promising tools to solve an algebraic system coming from cryptography
but their complexity has not yet been understood completely.

The contribution of this thesis consists of three parts. Firstly, the complexity
of various algebraic attacks are illustrated on the basis of examples. Secondly, the
relation between XL and Gröbner Basis techniques is clarified and made explicit.
We show that the algorithm XL is a cumbersome way to compute Gröbner Bases.
However, it does provide the cryptanalyst with a tool to distinguish some algebraic
systems, like HFE, that are easier to solve than random systems. Lastly, we discuss
a complexity estimation of XL based on Hilbert series and place some remarks
about its applicability.

The thesis is organized as follows:
• Chapter 1 summarizes the recent claims regarding the potential threat to

cryptosystems;
• Chapter 2 covers the mathematical prerequisites from computer algebra

and algebraic geometry;
• Chapter 3 introduces several common cryptosystems and explains their

algebraic cryptanalysis;
• Chapter 4 discusses advanced algebraic techniques to solve cryptographic

systems of equations;
• Chapter 5 relates XL to Gröbner Basis algorithms and discusses the com-

plexity of promising algebraic attacks;
• The appendices mainly consist of Magma implementations of the consid-

ered algorithms.

5

6 PREFACE

At this point the author wishes to thank the people who were involved in this
project. It is a pleasure to thank Henk van Tilborg for overall supervision and
arrangement of current and previous projects. Furthermore, many improvements
are due to reviews by Martijn Maas and Roderick Rodenburg. Finally, special
thanks are due to my committee, Benne de Weger, Gido Schmitz, Patrick Bours
and Hans Sterk, for fruitful discussions and feedback to improve this report.

Toon Segers

Contents

Abstract 3

Preface 5

Chapter 1. Recent attention to algebraic attacks 9
1.1. AES claimed to be less secure 9
1.2. First HFE challenge broken 10
1.3. Complexity of quadratic equations 11

Chapter 2. Preliminaries on algebraic geometry 17
2.1. Affine varieties and ideals 17
2.2. Gröbner Bases 20
2.3. Buchberger’s Algorithm 25
2.4. Solving systems of polynomial equations 30

Chapter 3. Algebraic attacks on common cryptosystems 35
3.1. A small blockcipher 35
3.2. Hidden Field Equations 40
3.3. AES and BES 44
3.4. Relinearization and XL 47

Chapter 4. Advanced Gröbner Bases techniques 53
4.1. Linking Gröbner Bases and linear algebra 53
4.2. Homogeneous Buchberger Algorithm 55
4.3. Reduction by linear algebra, F4 57
4.4. Gebauer and Möller Installation and F5 62

Chapter 5. Analysis of XL and F4 71
5.1. Similarities between XL and F4 71
5.2. Approximated lowest degree for XL 74
5.3. F5 and the index of regularity 79

Chapter 6. Conclusion 83

Appendix A. Algorithms written for Magma 85
A.1. Shared routines 86
A.2. Four byte blockcipher from Section 3.1 87
A.3. Hidden Field Equations 89
A.4. Homogeneous Buchberger Algorithm 91
A.5. Algorithm F4 92
A.6. Algorithm F5 95
A.7. XL 102

7

8 CONTENTS

Appendix B. Data corresponding to Examples 5.2 and 5.11 105

Appendix. Bibliography 107

Appendix. Index 109

CHAPTER 1

Recent attention to algebraic attacks

Recent speculation on the potential threat of algebraic attacks to common
cryptosystems has drawn a lot of attention. In this cryptanalysis, ciphers are
rewritten to systems of multivariate equations that are solved for variables rep-
resenting, for example, key bits. Algebraic attacks apply to a variety of ciphers,
ranging from blockciphers, like AES and Serpent [CP02], to streamciphers, like
Toyocrypt [Cou03] and Bluetooth [Arm02], and asymmetric cryptosystems, like
HFE [FJ03]. In this chapter we summarize two of the most promising claims and
explain the focus of this thesis.

An optimistic evaluation by Courtois and Pieprzyk [CP02] shows that an al-
gebraic attack might threaten, among other block ciphers, 128 bit AES. This claim
is discussed in Section 1.1. Other authors analyzed asymmetric cryptosystems in a
similar way. In Section 1.2 we introduce briefly how Faugère broke the first HFE
challenge [Pat96a]. The challenge consisted of a system of 80 multivariate, qua-
dratic equations over GF (2) and was proposed by Patarin. The HFE cipher is
based on the assumption that solving a random system of multivariate, quadratic
equations is NP-complete. The NP-completeness of random quadratic equations
is explained in Section 1.3. We begin by introducing these claims and treat the
cryptosystems in more detail later on in Chapter 3.

1.1. AES claimed to be less secure

On November 26th 2001, Rijndael [DR99] was chosen by the U.S. National
Institute of Standards and Technology as the Advanced Encryption Standard, AES .
Often credited as the successor of the Data Encryption Standard, AES was designed
to resist standard block cipher attacks such as differential and linear cryptanalysis.

In a famous paper from 1949, Shannon [Sha49] proposes a design criterion for
cryptosystems. He states that breaking a good cipher should require

“as much work as solving a system of simultaneous equations in
a large number of unknowns of a complex type.”

Being confident with the fact that solving systems of nonlinear equations becomes
intractable very quickly, designers do not seem to take Shannon’s criterion into
account explicitly. Unfortunately, when cryptanalysts express common ciphers as
systems of equations it seems that these systems are not necessarily as difficult as,
say, a random system of multivariate equations. In general, such random systems
are not solvable in polynomial time, as we shall see in Section 1.3.

Courtois et al. introduce a technique called Extended Linearization or XL
[CKPS00]. In a nutshell, XL solves a system of equations by adding new linearly
independent equations, created from the original ones by multiplying them with
monomials up to a given degree. Then, the coefficients of this expanded system are

9

10 1. RECENT ATTENTION TO ALGEBRAIC ATTACKS

represented by a matrix in which the rows represent the equations and the columns
represent the monomials. The final step is to reduce this matrix to row echelon
form and solve the corresponding system. This becomes possible when the number
of linearly independent equations approaches the number of monomials, so that the
matrix has nearly full rank. The complexity of the algorithm mainly depends on
the time it takes to row reduce the final matrix. Therefore, the number of equations
and distinct monomials in the expanded system will determine the complexity.

The authors of XL give a complexity estimation and claim that their algorithm
solves a randomly generated system of polynomial equations in sub-exponential
time when the number of equations slightly exceeds the number of variables. These
claims are based on simulations and are still impractical but better than the theo-
retical worst case.

In [CP02] the authors introduce an improvement of XL called Extended Sparse
Linearization, XSL, and express AES in a large number of quadratic equations as
depicted in Table 1.1. Despite their claim about the sub-exponential behavior of the
algorithm, the complexity estimation for their attack on 256 bit AES represented
by quadratic equations is still harder than exhaustive search.

Table 1.1. Dimensions of different ciphers.

cipher equations variables field

AES 128 8, 000 1, 600 GF (2)

AES 256 22, 400 4, 480 GF (2)
BES 128 5, 248 3, 948 GF (28)

AES encryption rounds combine operations over two different finite fields,
GF (2) and GF (28). To overcome the difficulty of analyzing a system working
in two different fields, Murphy and Robshaw introduced a new algebraic represen-
tation of the 128 bit AES over GF (28) coined the Big Encryption System, BES
[MR02b]. AES can be regarded as identical to BES with restricted message space
and key space. Hence, messages in the AES space encrypted by BES with an AES
key are equal to the corresponding AES encryptions. The BES cipher is described
by 3840 very sparse quadratic equations and 1408 linear equations in 3948 variables.

Based on the method from [CP02] to estimate the number of linearly inde-
pendent equations, attacking the 128 bit AES would roughly cost the equivalent of
2100 AES encryptions. This is still infeasible but promising. However, after notic-
ing that this approximation method sometimes returns more linearly independent
equations than distinct terms, Murphy and Robshaw refute the validity of these
estimations in a follow-up paper [MR02a].

Summarizing, we see that the behavior of algebraic attacks applied to AES
still remains unclear. Estimations of the number of equations and terms of the
expanded system have not been substantiated and are certainly not universally
accepted. However, the claims regarding the complexity of algebraic attacks similar
to XL are serious enough to investigate.

1.2. First HFE challenge broken

From a different perspective, Faugère and Joux present a new result regarding
algebraic attacks at Crypto 2003 [FJ03]. With their algorithm F5 implemented in

1.3. COMPLEXITY OF QUADRATIC EQUATIONS 11

C, they tackle the first HFE challenge proposed by Patarin [Pat96a]. F5 is based
on advanced Gröbner Bases techniques, which form the main topic of this report.

HFE or Hidden Field Equations [Pat96b] is an asymmetric cryptosystem based
on the intractability of a random system of quadratic multivariate equations. The
challenge consisted of 80 quadratic equations in 80 variables over GF (2) and took
the authors of [FJ03] two days and four hours on a computer with a 1 Ghz processor
and 4 GB of RAM. HFE is treated in more detail in Section 3.2.

The F5 algorithm is the result of many improvements on the original Buch-
berger Algorithm dating from 1965 [Buc65]. Similar to XL, F5 tries to expand the
original system of equations by selecting equations and monomials and converting
the larger system into a matrix. The most interesting differences with XL are a
more developed selection strategy and the fact that the degree of intermediate poly-
nomials is kept to a minimum. After row reduction of the matrix, the resulting new
equations are added to the system and a new selection is made. For this technique,
the most time consuming part is the linear algebra step.

For the HFE challenge, the largest linear system involved was represented by a
307, 126× 1, 667, 009 matrix over GF (2). To store such a matrix without compres-
sion requires roughly 64 GB of memory. The contribution by Faugère and Joux
demonstrates the effectiveness of techniques developed with theory from Gröbner
Bases. This field of algebraic geometry is understood reasonably well and seems
helpful for explaining the behavior of algebraic attacks.

In early August 2004, Steel also solves the first HFE challenge using the im-
plementation of Faugère’s algorithm F4 in Magma 2.11. It took 25.4 hours on a
750 MHz processor using 15 GB of memory. His latest results are presented on his
website [Ste04]. Steel shows that this implementation is roughly 2.7 times faster
than Faugère’s implementation of F5. The polynomials during computation did
not exceed degree four. This is a curiosity that will be explained further in Section
3.2.

1.3. Complexity of quadratic equations

The previous sections suggest that cryptosystems expressed as multivariate,
quadratic equations are not as complex as random systems of quadratic equations.
To be more precise about the feasibility of systems of equations, we introduce
common definitions regarding complexity following [Kob97]. Then, we explain why
solving a random system of multivariate quadratic equations is hard and illustrate
this with numerical results.

Definition 1.1 (NP). A decision problem P is in the class of nondeterministic
polynomial time problems, NP , if, given any instance of P, a person with unlimited
computing power not only can answer the question, but in case the answer is ‘yes’,
he can supply evidence that another person could use to verify the correctness of
the answer in polynomial time. His demonstration that his ‘yes’ answer is correct
is called a polynomial time certificate.

Example 1.2 (Reducing a problem). Let P1 be the problem of deciding if a
quadratic polynomial p(x) has two distinct real roots. Suppose p(x) = ax2 + bx+ c
and set N = b2 − 4ac for a, b, c and N ∈ Z. Then P1 reduces to the problem P2,
being the decision whether the integer N is positive or not.

12 1. RECENT ATTENTION TO ALGEBRAIC ATTACKS

The integer N in the above example can be computed in polynomial time,
therefore we know that our original problem P1 is equally easy. A positive answer
to P1 implies a positive answer to P2 and vice versa.

Definition 1.3. A decision problem P in NP is said to be NP-complete if
every other problem in NP can be reduced to P in polynomial time. A decision
or search problem not necessarily in NP is said to be NP-hard if any NP -problem
reduces to it.

Let P be the class of problems that have polynomial time complexity with
respect to the size of the input. One of the most famous conjectures in computer
science claims that P 6= NP . Solving a problem that is NP -complete in polynomial
time, would mean that all problems in NP are solvable in polynomial time, P =
NP . Deciding if a random system of multivariate equations has a solution is NP -
complete. This decision problem can be reduced from the the Satisfiability problem
for Boolean formulas, which is known to be NP -complete. This is shown below.

A Boolean variable x is a variable that can only adopt the values true and false.
Boolean variables can be combined by the logical or denoted by ∨, the logical and
denoted by ∧ and not(x) denoted by x to form Boolean formulas. Boolean formulas
satisfying Conjunctive Normal Form consist of Boolean expressions with or and not
statements connected by and statements. In complexity theory, the expressions
containing the or and not statements are called clauses, the variables literals.

Example 1.4. The Boolean formula (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) consists of two
clauses with two respectively three literals.

Definition 1.5 (Satisfiability). The following problem is called the Satisfiabil-
ity problem: “Given a Boolean formula, is it satisfiable?” If we only allow Boolean
formulas to consist of clauses with three literals, the corresponding problem is called
3-Satisfiability .

The noted computer scientist Cook formalized the notion of complexity and
proved the NP-completeness of the Satisfiability problem, since then called Cook’s
Theorem [Coo71]. To derive the NP-completeness of an arbitrary system of mul-
tivariate, quadratic equations over a finite field, we use the NP-completeness of
3-Satisfiability. The following proof is taken from the literature to illustrate how
one NP-complete problem reduces to another.

Lemma 1.6. The Satisfiability problem is reducible to the 3-Satisfiability prob-
lem, hence 3-Satisfiability is NP-complete.

Proof. [Coo71] Because 3-Satisfiability is a special case of Satisfiability, it
is in NP. To show NP-completeness, we shall show that Satisfiability polynomially
transforms to 3-Satisfiability.

Consider any Boolean formula F consisting of clauses C1, . . . , Cm. We shall
construct a new formula F ′ with three literals per clause, such that F ′ is satisfiable
if and only if F is. We shall examine the clauses of F one by one and replace each
Ci by an equivalent set of clauses, each with three literals. We distinguish between
three cases.

(1) If Ci has three literals, we do nothing.
(2) If Ci has more than three literals, say Ci = (λ1 ∨ λ2 ∨ . . . ∨ λk), k > 3,

we replace Ci by the k − 2 clauses (λ1 ∨ λ2 ∨ x1) ∧ (x1 ∨ λ3 ∨ x2) ∧ (x2 ∨

1.3. COMPLEXITY OF QUADRATIC EQUATIONS 13

λ4 ∨ x3) ∧ · · · ∧ (xk−3 ∨ λk−1 ∨ λk), where x1, . . . , xk−3 are new variables.
These new clauses are satisfiable if and only if Ci is.

(3) If Ci = λ, we replace Ci by λ ∨ y ∨ z, and if Ci = λ ∨ λ′, we replace it by
λ ∨ λ′ ∨ y. We then add the clauses

(z ∨ α ∨ β) ∧ (z ∨ α ∨ β) ∧ (z ∨ α ∨ β) ∧ (z ∨ α ∨ β)∧
(y ∨ α ∨ β) ∧ (y ∨ α ∨ β) ∧ (y ∨ α ∨ β) ∧ (y ∨ α ∨ β)

to the formula, where y, z, α and β are new variables. This addition forces
the variables z and y to be false in any assignment satisfying F ′, so that
the clauses λ and λ ∨ λ′ are equivalent to their replacements.

What we have just described is a polynomial-time transformation from Satisfiability
to 3-Satisfiability. Hence 3-Satisfiability is NP-complete. �

Theorem 1.7. Deciding if an arbitrary system of multivariate, quadratic equa-
tions over a finite field is solvable is NP-complete.

Proof. We show how to reduce any 3-Satisfiability problem to a system of
multivariate, quadratic equations over GF (2) in polynomial time. It is easy to
extend this system of equations to allow the equations to be over any finite field.

If we want show a one-to-one correspondence between a Boolean formula and
a system of equations over GF (2), we start by replacing the Boolean arithmetic.
Substitute ∨ by the field addition +, ∧ by the field multiplication ·, true by 1 and
false by 0. Suppose a Boolean formula F = C1 ∧C2 · · · ∧Cm in the 3-Satisfiability
problem consists of clauses Ci = (xi1∨xi2∨xi3). Simply substituting the arithmetic
would result in the following system of equations over GF (2),

x11 + x12 + x13 = 1, . . . , xm1 + xm2 + xm3 = 1.

Unfortunately, this does not correspond to the original Boolean formula in general.
To make every clause Ci equivalent to a subsystem of equations, we replace it by
the following set of equations. A solution of the following system corresponds to a
true clause Ci,

xi1 + xi2 + xi3 = xi4 ,

xi1 · xi2 + xi2 · xi3 + xi1 · xi3 = xi5 ,

xi4 + xi5 + xi4 · xi5 = 1,

as can be checked easily by means of a table. If the clause Ci is true for a certain
assignment of the literals xi1 , xi2 and xi3 , then it corresponds to an equivalent
assignment of the corresponding variables. In this way we are able to replace every
clause by an equivalent subsystem, which reduces the 3-Satisfiability problem to a
system of multivariate, quadratic equations over GF (2).

Adding the equations xij
(1 − xij

) = 0 for all variables, allows the variables
to be defined over a larger finite field while still being equivalent to the original
Boolean formula. In this way, F is Satisfiable if and only if the given system of
quadratic equations over a given finite field is solvable. �

In literature on algebraic attacks the NP-completeness is often mentioned but
never formally referred to. For completeness, we would like to refer to [GJ79]
and [LRK79] summarizing important results in this field. In particular, the NP-
completeness of deciding whether systems of quadratic equations have a solution
over finite fields is proven in [HPS93, p. 3].

14 1. RECENT ATTENTION TO ALGEBRAIC ATTACKS

Remark 1.8. The 2-Satisfiability problem is solvable in polynomial time. We
show that this implies that some systems of quadratic equations are not NP-
complete. Suppose F = C1 ∧ · · · ∧ Cm is a 2-Satisfiability problem. Since every
clause Ci = (xi ∨ yi) is equivalent to xi + yi + xi · yi = 1 over GF (2), a system of
quadratic equations with this form is not NP-complete.

NP-completeness is a definition for a class of problems that are hard to solve on
average. Cryptosystems are usually disguised as such problems, like the knapsack
problem. However, decryption necessarily demands that there has to be a trapdoor.
This makes structure inevitable and these instances with additional structure within
the class of NP-complete problems might be easier to solve than they seem.

In general, a system of multivariate, quadratic equations over a finite field is
NP-complete. This means that it will be very unlikely that every quadratic system is
solvable in polynomial time. To illustrate this, we generate several random systems
consisting of n quadratic equations in n variables over GF (2) and try to solve
them using F4, which is one of the fastest algorithms available. Figure 1.1 shows
the average time it took Magma 2.11 [BCP97] to compute the solutions of these
systems on a Pentium 4 desktop computer. Every average corresponds to twenty
samples.

Remark 1.9. Unless indicated otherwise, all tests in this report are run on a
Pentium 4, 2 GHz with 512 MB RAM.

Figure 1.1. Average timings for Magma 2.11 to solve a random
multivariate, quadratic system of n equations in n variables.

The time needed to solve the examples for n equations differs roughly at least
a factor 2 from the systems of n − 1 equations, which indicates the exponential
behavior of the method. For growing n, this factor needs to be asymptotically less
than two, for the algebraic attack to become better than exhaustive search. The
figure also shows the least-square fit for an exponential function, being

0.0000193 ∗ 2.02n.

Remark 1.10. The fit curve was created in Mathematica 4. For example, the
command

1.3. COMPLEXITY OF QUADRATIC EQUATIONS 15

D = Fit[d, {1, n, n^2}, n]

finds the least-square fit D for the data d as a linear combination of the functions
1, n and n2. The goodness of a fit curve is measured by the least sum of squares
between the data di and its approximation Di, χ2 =

∑
i |Di − di|2.

The depicted curve for the time spent is close to optimal. This is due to the
following observation. After a brief glance at the plotted averages, the behavior
seems exponential. Therefore, we would like to apply a least-square fit with respect
to an exponential function. To figure out the base number, we take the natural
logarithm of the values in the data set and apply a least-square fit with a linear
function. This is illustrated in Figure 1.2. Now, let c equal the derivative of the
linear fit. Taking the natural exponent to the power c returns the base number of
the exponential function approximating the data in the original figures.

Figure 1.2. Ln(average timings) for Magma 2.11 to solve a ran-
dom multivariate, quadratic system of n equations and n variables.

In cryptography you do not want a certain percentage of the problems to be
easily solvable. The recent claims suggest that existing cryptosystems might not
be as hard to solve as random systems of quadratic equations. They suggest that
equations corresponding to cryptosystems contain more structure than random sys-
tems. From the well studied field of Gröbner Bases we shall try to understand the
difference between common ciphers and random systems of multivariate, quadratic
equations. Furthermore, the behavior of algebraic attacks is studied and expressed
in measurable terms, such as time and memory consumption.

CHAPTER 2

Preliminaries on algebraic geometry

The theory of Gröbner Bases is an example of how the solution to one problem
became the key for solving a great variety of other problems. This major step was
taken by Buchberger in 1965 who formulated the concept as a solution to the Ideal
Membership Problem and, extending a suggestion of his advisor Gröbner, found an
algorithm to compute such a basis and proved the correctness and the termination
of the algorithm.

The purpose of this chapter is to introduce the basic theory and notation nec-
essary to discuss systems of multivariate equations. We shall introduce:

• Affine varieties and ideals in Section 2.1;
• Gröbner Bases in Section 2.2;
• Buchberger’s Algorithm in Section 2.3;
• How to solve systems of equations in Section 2.4.

To conclude the introduction of this chapter, we would like to mention the following
references as a good introduction to algebraic geometry and computer algebra,
[CLO96], [CLO98], [BW93], [KR00] and [Mis93]. Many of the theorems in this
chapter appear in one or more of these books. We limit ourselves to the proofs that
are essential for understanding the operation of the Buchberger Algorithm.

2.1. Affine varieties and ideals

In this section we introduce ideals and affine varieties following the description
of [CLO96]. However, at some points we slightly change the notation. A monomial
in n variables x1, . . . , xn is a product of the form

xα1
1 · xα2

2 · . . . · xαn
n ,

where all the exponents are in Z≥0, the nonnegative integers. The total degree
of this monomial is the sum α1 + . . . + αn. We simplify the notation by setting
α = (α1, . . . , αn) ∈ Zn

≥0 and

xα = xα1
1 · xα2

2 · . . . · xαn
n .

Denote the total degree of xα by |α|.

Definition 2.1. A polynomial f in x1, . . . , xn with coefficients in a field k is
a finite k-linear combination of monomials,

f =
∑
α

cαx
α, cα ∈ k,

where the sum is over a finite number of n-tuples α = (α1, . . . , αn). The set of all
polynomials in x1, . . . , xn with coefficients in k is denoted by k[x1, . . . , xn]. From
this point, P refers to the polynomial ring over field k in n variables, k[x1, . . . , xn],
if not explicitly stated otherwise.

17

18 2. PRELIMINARIES ON ALGEBRAIC GEOMETRY

We will use the following terminology.

Definition 2.2. Let f =
∑

α cαx
α be a polynomial in P .

• We call cα the coefficient of the monomial xα in the polynomial f ;
• If cα 6= 0, then we call cαxα a term of f ;
• The total degree of f , denoted deg(f), is the maximum |α| such that the

coefficient cα is non-zero.
• The set of monomials in P is denoted by T (P) and T (f) is the set of

monomials of f , called the support .

The ability to regard a polynomial as a function is what makes it possible to
link algebra and geometry. Therefore, the affine space is introduced in which the
geometrical shapes exist.

Definition 2.3. Given a field k and a positive integer n, we define the n-
dimensional affine space to be the set

kn = {(a1, . . . , an) : a1, . . . , an ∈ k} .
Evaluating a polynomial f at (a1, . . . , an) ∈ kn is a function

f : kn → k,

where every xi is replaced by ai, for 1 ≤ i ≤ n.
As mentioned in the previous chapter, the purpose of this thesis is to study the

complexity of solving systems of polynomial equations. The notion of a variety is
therefore inevitable. The set of all solutions to a system of equations

f1(x1, . . . , xn) = . . . = fm(x1, . . . , xn) = 0

is called an affine variety, explicitly defined as follows.

Definition 2.4. Let k be a field and let f1, . . . , fm be polynomials in P . We
define

V(f1, . . . , fm) = {(a1, . . . , an) ∈ kn : fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ m} .
We call V(f1, . . . , fs) the affine variety defined by f1, . . . , fm.

The following example gives an idea of the applications of affine varieties.

Example 2.5. Suppose we have a robot arm consisting of two parts, similar to
a human arm. The parts are connected together like an elbow connects the lower
and upper arm. The part anchored at the origin is of length 2 and the other of
length 1. If the robot arm is able to freely control its elbow at coordinates (x1, x2)
and hand at (x3, x4) in two dimensions, we can describe the subset of possible states
by the affine variety in R4 defined by the equations

x2
1 + x2

2 = 4,

(x1 − x3)2 + (x2 − x4)2 = 1.

Intersections and unions of affine varieties are again affine varieties as we shall
see in the following lemma.

Lemma 2.6. If V = V(f1, . . . , fs), W = V(g1, . . . , gt) ⊂ kn are affine varieties,
then so are

V ∩W = V(f1, . . . , fs, g1, . . . , gt),

V ∪W = V(figj : 1 ≤ i ≤ s, 1 ≤ j ≤ t).

2.1. AFFINE VARIETIES AND IDEALS 19

Proof. See [CLO96, p.11]. �

To compute with affine varieties, we need the notion of ideals.

Definition 2.7. A subset I ⊂ P is an ideal if it satisfies:
(1) 0 ∈ I;
(2) If f , g ∈ I, then f + g ∈ I;
(3) If f ∈ I and h ∈ P , then hf ∈ I.

Polynomial equations have a nice interpretation in terms of ideals. The ideal
generated by a finite number of polynomials is defined as follows.

Definition 2.8. Let f1, . . . , fm be polynomials in P . Define the ideal

〈f1, . . . , fm〉 = {
m∑

i=1

hifi : h1, . . . , hm ∈ P}.

If there exists a finite set of polynomials in P that generates a given ideal, we
call this set a basis. In Section 2.2 a fundamental theorem in commutative algebra,
called the Hilbert Basis Theorem, is proven. This theorem states that every ideal
in P is finitely generated. Note that a given ideal may have many different bases.

Proposition 2.9. If f1, . . . , fs and g1, . . . , gt are bases of the same ideal in P ,
so that 〈f1, . . . , fs〉 = 〈g1, . . . , gt〉, then V(f1, . . . , fs) = V(g1, . . . , gt).

Proof. Every f ∈ 〈f1, . . . , fs〉 is also in 〈g1, . . . , gt〉 and can therefore be ex-
pressed as h1g1 + . . .+ htgt. Hence, every a = (a1, . . . , an) ∈ V(g1, . . . , gt) satisfies
f(a) = 0 and vice versa for all g ∈ 〈g1, . . . , gt〉. This shows that both varieties
consist of the same points. �

Example 2.10. Set k = GF (2) and

f1 = xy + xz + y2 + yz + z2, f2 = xz + z2, f3 = y + z2

in k[x, y, z]. Consider the variety V(f1, f2, f3). The ideal spanned by 〈f1, f2, f3〉
equals

〈xz + z2, y + z2, z4〉,
since f1 = (z+1)(xz+z2)+(x+y+z2+z)(y+z2)+z4. The second variety is easier to
determine, since the new-found basis elements allow backwards substitution. Hence,
we find the common zeros of f1, f2 and f3 being {(0, 0, 0), (1, 0, 0)} in k3.

The ability of changing the basis of an ideal without affecting the variety plays
a key role in solving a system of polynomial equations. In the next section we in-
troduce Gröbner Bases and Buchberger’s Algorithm, which turn out to be powerful
tools for understanding affine varieties. To study which polynomials vanish on the
same variety, we introduce a new algebraic object.

Definition 2.11. Let V ⊂ kn be an affine variety. Then we set

I(V) = {f ∈ P : f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V } .

The crucial observation is that this is also an ideal ([CLO96, p.31]). Something
that might not be completely intuitive is that I(V(f1, . . . , fm)) does not equal
〈f1, . . . , fm〉 in general.

Lemma 2.12. If f1, . . . , fm ∈ P , then 〈f1, . . . , fm〉 ⊆ I(V(f1, . . . , fm)), al-
though equality need not occur.

20 2. PRELIMINARIES ON ALGEBRAIC GEOMETRY

Proof. See [CLO96, p.33]. �

This lemma is illustrated by an example.

Example 2.13. The ideal spanned by x2 ∈ R[x], 〈x2〉, is a proper subset of
〈x〉 = I(V(x2)).

2.2. Gröbner Bases

In the previous section, we have seen that the problem of solving a system of
polynomial equations

f1(x1, . . . , xn) = . . . = fm(x1, . . . , xn) = 0

is the same as finding the points of the affine variety V(f1, . . . , fm). To help us in
doing this, we introduce Gröbner Bases, which turn out to be a powerful tool to
describe ideals in terms of a finite generating set. The main goal in this section is
to describe the most important ideas to find such a set.

Let P be a polynomial ring. The set of monomials T (P) is important to us and
one can choose to arrange this set in many different ways. One way is of particular
interest.

Definition 2.14. A monomial ordering on P is any relation > on Zn
≥0, or

equivalently, any relation on the set of monomials xα, α ∈ Zn
≥0, satisfying:

(1) > is a total ordering on Zn
≥0;

(2) If α > β and α, β, γ ∈ Zn
≥0, then α+ γ > β + γ;

(3) > is a well-ordering on Zn
≥0. This means that every nonempty subset of

Zn
≥0 has a smallest element under >.

A specific ordering σ for > is denoted by >σ. The third property of the previous
definition, the well-ordering, is often referred to as admissible ordering and has an
important implication. It is used to show that specific algorithms that make explicit
use of a well-ordering, like the Buchberger Algorithm, eventually terminate.

Lemma 2.15. An order relation > on Zn
≥0 is a well-ordering if and only if every

strictly decreasing sequence in Zn
≥0

α(1) > α(2) > α(3) > . . .

eventually terminates.

Proof. See [CLO96, p.53]. �

We introduce the three most important monomial orderings for our applica-
tions.

Definition 2.16. [Lexicographic Order (lex)] Let α = (α1, . . . , αn) and β =
(β1, . . . , βn) ∈ Zn

≥0. We say α >lex β if, in the vector difference α − β ∈ Zn, the
left-most non-zero entry is positive. We will write xα >lex x

β if α >lex β.

Definition 2.17. [Graded Lex Order] Let α, β ∈ Zn
≥0. We say α >grlex β if

|α| =
n∑

i=1

αi > |β| =
n∑

i=1

βi, or α >lex β if |α| = |β| .

2.2. GRÖBNER BASES 21

Definition 2.18. [Graded Reverse Lex Order (grevlex)] Let α, β ∈ Zn
≥0. We

say α >grevlex β if

|α| =
n∑

i=1

αi > |β| =
n∑

i=1

βi,

or in α− β ∈ Zn, the right-most non-zero entry is negative if |α| = |β|.

Furthermore, there are also some common definitions for special terms of poly-
nomials with respect to orderings.

Definition 2.19. Let f =
∑

α aαx
α be a non-zero polynomial in P and let >

be a monomial order.
• The multidegree of f is

multideg(f) = max>(α ∈ Zn
≥0 : aα 6= 0).

• The total degree of f is

totaldeg(f) =
∑

1≤i≤n

multideg(f)i.

• The leading coefficient of f is

LC(f) = amultideg(f) ∈ k.
• The leading monomial of f is

LM(f) = xmultideg(f).

• The leading term of f is

LT (f) = LC(f) · LM(f).

• The polynomial f is called monic if

LC(f) = 1.

Remark 2.20. For a subset F of the polynomial ring P , let LT (F) and LM(F)
denote {LT (f) : f ∈ F} and {LM(f) : f ∈ F} respectively.

To test whether an element f is a member of a certain ideal 〈f1, . . . , fm〉 ⊆ P ,
one needs to show if it can be written as a combination of elements in {f1, . . . , fm}
in the form

f = a1f1 + . . .+ amfm,

for ai ∈ P . If so, f is in the given ideal. However, if this is not possible an element
r ∈ P remains, which can not be expressed in the specified polynomials. This test
is done by the Division Algorithm for the multivariate case, which is introduced
explicitly in the following theorem.

Theorem 2.21. Fix a monomial order > on Zn
≥0, and let F = (f1, . . . , fm) be

an ordered m-tuple of polynomials in P . Then every f ∈ P can be written as

f = a1f1 + . . .+ amfm + r,

where ai, r ∈ P , and either r = 0 or r is a k-linear combination of monomials,
none of which is divisible by any of LT (f1), . . . , LT (fm). We will call r a remainder
of f on division by F . Furthermore, if aifi 6= 0, then we have

multideg(f) ≥ multideg(aifi).

22 2. PRELIMINARIES ON ALGEBRAIC GEOMETRY

Proof. See [CLO96, p.62]. This proof introduces the Division Algorithm
for the multivariate polynomial ring P , which returns the a1, . . . , am and r of the
theorem and thereby shows the existence of these elements. �

Definition 2.22. The Division Algorithm is defined as follows.
• Input: f1, . . . , fm, f ∈ P
• Output: a1, . . . , am, r ∈ P such that f can be expressed as in Theorem

2.21.
(1) a1 := 0; . . . ; am := 0; r := 0
(2) p := f
(3) WHILE p 6= 0 DO
(4) i := 1
(5) divisionoccurred := false
(6) WHILE i ≤ m AND divisionoccurred = false DO
(7) IF LT (fi)|LT (p) THEN
(8) ai := ai + LT (p)/LT (fi)
(9) p := p− (LT (p)/LT (fi))fi

(10) divisionoccurred := true
(11) ELSE
(12) i := i+ 1
(13) IF divisionoccurred = false THEN
(14) r := r + LT (p)
(15) p := p− LT (p)

In some situations permutations of the set {f1, . . . , fm} do lead to different
remainders. As we shall see in Section 2.3, this is not the case when the set is a
Gröbner Basis.

In the univariate case, the division algorithm includes a criterion on the degree
of the remainder. Intuitively one would expect a simpler criterion on the total
degree of the remainder in the multivariate case than the one in Theorem 2.21.
However, this is not the case. The following example illustrates why.

Example 2.23. Let x >lex y. The remainder on division of x5 + y5 ∈ R[x, y]
by x+ y2 by the Division Algorithm is −y10 + y5, since

x5 + y5 = (x+ y2)(x4 − x3y2 + x2y4 − xy6 + y8)− y10 + y5

and y10 is not divisible by x.

One of the important characteristics of a Gröbner Basis is that it specifies a
finite basis for the ideal of all the leading terms that occur in the ideal defined by a
given set of polynomials. This ideal of leading terms is a monomial ideal, a subclass
of ideals with special properties.

Definition 2.24. An ideal I ⊂ P is a monomial ideal if it can be spanned by
monomials or, equivalently, if there is a subset A ⊂ Zn

≥0 (possibly infinite) such that
I consists of all polynomials that are finite sums of the form

∑
α∈A hαx

α, where
hα ∈ P . In this case, we write I = 〈xα : α ∈ A〉.

Lemma 2.25. Let a monomial ideal I = 〈xα : α ∈ A〉 ⊂ P and f ∈ P . Some
basic properties of I are:

• A monomial xβ lies in I if and only if xβ is divisible by xα for some
α ∈ A;

2.2. GRÖBNER BASES 23

• f ∈ I ⇔ T (f) ⊂ I ⇔ f is a k-linear combination of the monomials in I;
• Two monomial ideals are the same if and only if they contain the same

monomials.

Proof. See [CLO96, pp. 67–69]. �

An important building block for the Hilbert Basis Theorem is the property
that monomial ideals of P are finitely generated. This is stated explicitly in the
following theorem called Dickson’s Lemma.

Theorem 2.26 (Dickson’s Lemma). A monomial ideal I = 〈xα : α ∈ A〉 ⊂ P
can be written in the form I = 〈xα(1), . . . , xα(m)〉, where α(1), . . . , α(m) ∈ A. In
particular, I has a finite basis.

Proof. See [CLO96, p. 69]. �

To answer the question how to describe a given ideal by a finite set of generators,
we shall see that its monomial ideal of leading terms plays a key role.

Definition 2.27. Let I ⊂ P be an ideal other than {0}. We denote by LT (I)
the set of leading terms of elements of I. Thus

LT (I) = {cxα : ∃f ∈ I with LT (f) = cxα} ⊂ P.

We denote by 〈LT (I)〉 the ideal generated by the elements of LT (I).

With help of Dickson’s Lemma the following property is derived.

Proposition 2.28. 〈LT (I)〉 is a monomial ideal. There are g1, . . . , gm ∈ I
such that 〈LT (I)〉 = 〈LT (g1), . . . , LT (gm)〉.

Proof. See [CLO96, p.73]. �

Now, by the previous proposition and the Division Algorithm one can prove
that every ideal has a finite generating set. This proof is included because it gives
a clue of how an algorithm could test whether a polynomial is a member of a given
ideal.

Theorem 2.29 (Hilbert Basis Theorem). Every ideal I ⊂ P has a finite gen-
erating set. That is, I = 〈g1, . . . , gm〉 for some g1, . . . , gm ∈ I.

Proof. If I = {0}, we take our generating set to be {0}, which is certainly
finite. If I contains some non-zero polynomial, then a generating set g1, . . . , gm for
I can be constructed as follows. By Proposition 2.28, there are g1, . . . , gm ∈ I that
generate 〈LT (I)〉. We show I = 〈g1, . . . , gm〉.

It is clear that 〈g1, . . . , gm〉 ⊂ I. Conversely, let f ∈ I be any polynomial. If
we apply the Division Algorithm to divide f by the m-tuple (g1, . . . , gm) then we
get an expression of the form

f = a1g1 + . . .+ amgm + r

where r is divisible by LT (g1), . . . , LT (gm). We claim that r = 0.
Note that r = f − a1g1 + . . . + amgm ∈ I. If r 6= 0, then LT (r) ∈ 〈LT (I)〉 =

〈LT (g1), . . . , LT (gm)〉, and from the first property of Lemma 2.25 it follows that
LT (r) must be divisible by some LT (gi). This contradicts with the definition of a
remainder and r = 0.

24 2. PRELIMINARIES ON ALGEBRAIC GEOMETRY

Thus,
f = a1g1 + . . .+ amgm ∈ 〈g1, . . . , gm〉

and therefore I ⊂ 〈g1, . . . , gm〉, which completes the proof. �

Now suppose we want to test if a given f is a member of the ideal I =
〈g1, . . . , gm〉. The proof of the Hilbert Basis Theorem indicates that we can ex-
pand our basis of 〈LT (I)〉 until all minimal monomials are included. Hence, every
polynomial f ∈ I reduces to zero with respect to this basis since the remainder
cannot be larger than the leading terms of the basis elements. To be more precise,
there exists a finite basis G of I such that for every f ∈ I there is a basis element
g ∈ G satisfying LT (g)|LT (f). This crucial observation finally leads to the explicit
idea of a Gröbner Basis.

Definition 2.30. Fix a monomial order. A finite subset G = {g1, . . . , gm} of
an ideal I is said to be a Gröbner Basis or standard basis if

〈LT (g1), . . . , LT (gm)〉 = 〈LT (I)〉.

Example 2.31. Let I = 〈f1, f2〉 ⊂ R[x, y], where f1 = x3 − 2xy and f2 =
x2y − 2y2 + x. Suppose we are using the grlex ordering on monomials, then

x · f1 − y · f2 = x2.

Therefore, x2 ∈ I and x2 ∈ 〈LT (I)〉. However, x2 is not divisible by LT (f1) or
LT (f2), so f1 and f2 do not form a Gröbner Basis of I.

Next, consider the ideal J = 〈g1, g2〉 = 〈x+z, y−z〉. For lex order in R[x, y, z],
we claim that g1 and g2 form a Gröbner Basis of the ideal J . To prove this, one
must show that every leading term in J lies in the ideal 〈x, y〉 or, equivalently, that
every leading term is divisible by x or y. This is done as follows.

Every element f ∈ J can be written as

f = a1g1 + a2g2 = a1x+ a1z + a2y − a2z,

for a1, a2 ∈ P . If a1x and a2y do not cancel each other, then the leading term of
f is in 〈LT (J)〉. Now, suppose a1x and a2y do cancel each other, then the leading
terms of a1 and a2 are divisible by x or y, or a1 = a2 = 0 holds. If a1 and a2 are
non-zero, then a1z−a2z 6= 0 and therefore the leading term of a1z−a2z is divisible
by x or y.

The Hilbert Basis Theorem has two important consequences. The first one
concerns a nested increasing sequence of ideals in P ,

I1 ⊂ I2 ⊂ I3 ⊂ . . .

and states that this so-called ascending chain stabilizes at a certain moment. This
will be a necessary condition to show that algorithms for computing a Gröbner
Basis terminate. The second consequence is that the variety corresponding to a set
of polynomials equals the variety of the ideal generated by the set of polynomials.
To be more precise about both, the following results are stated.

Theorem 2.32. [The Ascending Chain Condition] Let

I1 ⊂ I2 ⊂ I3 ⊂ . . .

be an ascending chain of ideals in P . Then there exists an N ≥ 1 such that

IN = IN+1 = IN+2 =

2.3. BUCHBERGER’S ALGORITHM 25

Proof. See [CLO96, p. 76]. �

Definition 2.33. Let I ⊂ P be an ideal. We will denote by V(I) the set

{(a1, . . . , an) ∈ kn : f(a1, . . . , an) = 0 for all f ∈ I} .

Proposition 2.34. V(I) is an affine variety. In particular, if I = 〈f1, . . . , fm〉,
then V(I) = V(f1, . . . , fm).

Proof. See [CLO96, p. 77]. �

2.3. Buchberger’s Algorithm

In the previous section it was shown that an ideal can be described by a finite set
of generators. After describing a cryptosystem by a set of equations, the problem is
to find the common zeros of the corresponding set of polynomials, the affine variety.
The affine variety is determined by the polynomials and, equivalently, by the ideal
spanned by the polynomials. In this section Buchberger’s Algorithm is introduced
to find a Gröbner Basis. This special finite set of generators turns out to be more
suitable for finding the common zeros.

Gröbner Bases have the useful property that if we apply the Division Algorithm
to a polynomial f and a Gröbner Basis G, the remainder r will be unique. This is
a crucial observation for testing whether an element is a member of a given ideal.

Proposition 2.35. Let G = {g1, . . . , gm} be a Gröbner Basis for an ideal
I ⊂ P and let f ∈ P . Then there is a unique r ∈ P with the following two
properties:

(1) No term of r is divisible by any leading term of G;
(2) There is a g ∈ I such that f = g + r.

In particular, r is the remainder on division of f by G no matter how the elements
of G are listed when using the Division Algorithm.

Proof. See [CLO96, p.79]. �

If, by the Division Algorithm, f reduces to r modulo a tuple G = (g1, . . . , gm),
r is denoted by f

G
. Due to the previous proposition, G might also be a set if its

elements form a Gröbner Basis, since the remainder r does not depend on the order
of the elements in G in this case.

In the proof of the Hilbert Basis Theorem (Theorem 2.29) we observed that at
some point any polynomial f in the ideal I ⊂ P reduces to zero modulo a finite
basis G. In constructing a Gröbner Basis, we search for basis elements in which the
leading terms generate the ideal 〈LT (I)〉. The division of f by a set of generators
G′ that does not satisfy this criterion, results in an r with a leading term that does
not exist in {LT (g) : g ∈ G′}. The idea of S-polynomials is introduced to find new
elements in the ideal, like f , that could add leading terms to the intermediate basis
G′.

Definition 2.36. Let f , g ∈ P be non-zero polynomials.
(1) If multideg(f) = α and multideg(g) = β, then let γ = (γ1, . . . , γn), where

γi = max(αi, βi) for each i. We call xγ the least common multiple of
LM(f) and LM(g), written xγ = LCM(LM(f), LM(g));

26 2. PRELIMINARIES ON ALGEBRAIC GEOMETRY

(2) The S-polynomial of f and g is the combination

S(f, g) =
xγ

LT (f)
· f − xγ

LT (g)
· g;

(3) The pairs (f, g) in the foregoing are commonly referred to as critical
pairs and totaldeg(LCM(LM(f), LM(g))) is the degree of the critical
pair (f, g).

The name S-polynomial is actually an abbreviation for ‘syzygy polynomial’, a
notion that will be studied later in Section 4.4. In astronomy the word syzygy is
used for an alignment of three planets. Its root is a Greek word meaning ‘yoke’.
Hence, like a yoke aligns oxen, a syzygy aligns the leading terms of two polynomials.
Using S-polynomials, the following lemma turns out to be a helpful tool to prove
the correctness and termination of the Buchberger Algorithm and variations.

Lemma 2.37. Suppose we have a sum f =
∑m

i=1 cifi, where ci ∈ k and
multideg(fi) = δ ∈ Zn

≥0 for all i. If multideg(
∑n

i=1 cifi) < δ, then f is a k-
linear combination of the S-polynomials S(fj , fk) for 1 ≤ j, k ≤ m where S(fj , fk)
has multidegree < δ.

Proof. See [CLO96, p. 81]. �

Based on Lemma 2.37, Buchberger formulated his S-pair criterion that enables
to determine effectively whether a given generating set of an ideal is a Gröbner
Basis. This criterion leads in a natural way to Buchberger’s Algorithm. The concept
of a standard representation is introduced to explain the proof.

Definition 2.38. [BW93, p.218] Let f ∈ P and G = {g1, . . . , gm} a finite
subset of P . A representation

f =
m∑

i=1

bigi

with polynomials bi ∈ P is called a standard representation of f w.r.t. G if

maxi(multideg(bigi)) ≤ multideg(f).

We say that this is a t-representation of f w.r.t. G if

maxi(multideg(bigi)) ≤ multideg(t).

The following result regarding S-polynomials and standard representations makes
the theorem easier to prove. It states that when all S-polynomials reduce to zero,
there is always a representation of f ∈ I where the maximum multidegree of the
terms equals the multidegree of f .

Lemma 2.39. Let G = {g1, . . . , gm} be a finite subset of P and the ideal I be

generated by G. If all gi, gj ∈ G satisfy S(gi, gj)
G

= 0 then every f ∈ I has a
standard representation

(2.1) f =
m∑

i=1

bigi

satisfying multideg(f) = maxi(multideg(bigi)).

2.3. BUCHBERGER’S ALGORITHM 27

Proof. We follow the proof of [CLO96, p. 82]. Let f ∈ I = 〈g1, . . . , gm〉,
there are polynomials hi ∈ P such that

(2.2) f =
m∑

i=1

higi where multideg(f) ≤ maxi(multideg(higi)).

If equality does not hold for the multidegree then some cancellation must occur
among the leading terms of (2.2). Lemma 2.37 will enable us to rewrite this in terms
of S-polynomials and the assumption that the S-polynomials have zero remainders
will allow us to replace it by an expression that involve less cancellation and will
eventually satisfy (2.1).

Now, let δ(i) = multideg(higi) and define δ = max(δ(1), . . . , δ(m)), then in-
equality (2.2) becomes

multideg(f) ≤ δ.

Since a monomial ordering is a well-ordering, according to Definition 2.14, we can
select an expression for f such that δ is minimal. The equality multideg(f) = δ is
proven by contradiction.

Suppose multideg(f) < δ. Isolate the terms of multidegree δ in representation
(2.2) as follows.

f =
∑

δ(i)=δ

higi +
∑

δ(i)<δ

higi

=
∑

δ(i)=δ

LT (hi)gi +
∑

δ(i)=δ

(hi − LT (hi))gi +
∑

δ(i)<δ

higi.(2.3)

The monomials appearing in the second and third sums on the second line all
have multidegree < δ. Thus, the assumption that multideg(f) < δ means that
multideg(

∑
δ(i)=δ LT (hi)gi) < δ.

Write LT (hi) = cix
α(i). Then the first sum in expression (2.3) has exactly the

form described in Lemma 2.37. This implies that this sum is a linear combination
of the S-polynomials S(xα(j)gj , x

α(j′)gj′). However,

S(xα(j)gj , x
α(j′)gj′) =

xδ

xα(j)LT (gj)
xα(j)gj −

xδ

xα(j′)LT (gj′)
xα(k)gj′

= xδ−γjj′S(gj , gj′),

where xγjj′ = LCM(LM(gj), LM(gj′)). Thus there are constants cjj′ ∈ k such
that

(2.4)
∑

δ(i)=δ

LT (hi)gi =
∑
j,j′

cjj′x
δ−γjj′S(gj , gj′).

The hypothesis S(gi, gj)
G

= 0 and the Division Algorithm imply

S(gj , gj′) =
m∑

i=1

aijj′gi,

where aijj′ ∈ P and

(2.5) multideg(aijj′gi) ≤ multideg(S(gj , gj′))

28 2. PRELIMINARIES ON ALGEBRAIC GEOMETRY

for all indices i, j, j′ ∈ {1, . . . ,m}. Now, multiply S(gj , gj′) by xδ−γjj′ to obtain

xδ−γjj′S(gj , gj′) =
m∑

i=1

bijj′gi,

where bijj′ = xδ−γjj′aijj′ . Then (2.5) and Lemma 2.37 imply that

(2.6) multideg(bijj′gi) ≤ multideg(xδ−γjj′S(gj , gj′)) < δ.

Substitution of the S-polynomials in the first sum of (2.3) gives∑
δ(i)=δ

LT (hi)gi =
∑
j,j′

cjj′(
∑

i

bijj′gi) =
∑

i

b̃igi

for b̃i ∈ P , which by (2.5) and (2.6) have the property that for all i,

multideg(b̃igi) < δ.

Hence, every term in (2.3) has multidegree < δ. This contradicts the minimality of
δ and completes the proof. �

Lemma 2.39 simplifies the proof of the following characterization of Gröbner
Bases due to Buchberger.

Theorem 2.40 (Buchberger’s S-pair criterion). Let I be a polynomial ideal.
Then a basis G = {g1, . . . , gm} for I is a Gröbner Basis for I if and only if for all
pairs i 6= j, the remainder on division of S(gi, gj) by G is zero.

Proof. ⇒: If G is a Gröbner Basis, then since S(gi, gj) ∈ I, the remainder on
division by G is zero by Proposition 2.35.

⇐: Let f ∈ I be a non-zero polynomial. If the S-polynomials have zero remain-
ders on division by G, then LT (f) ∈ 〈LT (g1), . . . , LT (gm)〉 since f has a standard
representation by Lemma 2.39. Hence, G is a Gröbner Basis. �

The criterion can be formulated somewhat more rigid. This is done in [BW93].
In [Fau99] and [Fau02] this criterion is used, hence it is included here.

Theorem 2.41. Let G be a finite subset of P with 0 not in G. Assume that for
all g1, g2 ∈ G, S(g1, g2) either equals zero or it has a t-representation with respect
to G for some t < LCM(LT (g1), LT (g2)). Then G is a Gröbner Basis.

Proof. See [BW93, p.219]. �

Theorem 2.40 is a consequence of Theorem 2.41, since

LT (S(g1, g2)) < LCM(LT (g1), LT (g2)).

Now we are ready to state the Buchberger Algorithm, which forms the basis of
our analysis of algebraic attacks.

Theorem 2.42 (Buchberger Algorithm). Let I = 〈f1, . . . , fm′〉 6= {0} be a
polynomial ideal. Then a Gröbner Basis for I can be constructed in a finite number
of steps by the following algorithm.

• Input: F = {f1, . . . , fm′}
• Output: A Gröbner Basis G = {g1, . . . , gm} for I such that F ⊂ G.

(1) G := F
(2) REPEAT
(3) G′ := G

2.3. BUCHBERGER’S ALGORITHM 29

(4) FOR each critical pair (p, q), p 6= q in G′ DO

(5) S = S(p, q)
G′

(6) IF S 6= 0 THEN G := G ∪ {S}
(7) UNTIL G = G′

Proof. Correctness and termination are proven by the following three obser-
vations.

(1) At every stage of the algorithm, G ⊂ I and 〈G〉 = I hold;

(2) If G = G′ then S(p, q)
G′

= 0 for all p, q ∈ G and, by Buchberger’s S-pair
criterion, G is a Gröbner Basis at this moment;

(3) The equality G = G′ happens in finitely many steps since the ideals
〈LT (G′)〉, from successive iterations of the loop, form an ascending chain.
Due to the Ascending Chain Condition (Theorem 2.32), this chain of
ideals stabilizes after a finite number of iterations and at that moment
〈LT (G)〉 = 〈LT (G′)〉 holds.

�

This is the first one of a family of algorithms for computing a Gröbner Basis.
A part of this thesis is dedicated to introducing other algorithms for this purpose.
Many improvements on the Buchberger algorithm concern the order in which to
choose and reduce the critical pairs, which is often called selection strategy . Other
improvements concern the so-called criteria to avoid critical pairs that reduce to
zero with respect to the intermediate basis G′. F4 is a well-known example of
an algorithm with an improved selection strategy, which is treated in Section 4.3.
Gebauer and Möller [GM88] and Faugère [Fau02] formulated criteria, which shall
be treated in Chapter 4.

Remark 2.43. Commonly, algorithms for the computation of a Gröbner Ba-
sis, like the Buchberger Algorithm, append reduced S-polynomials to a set G′ to
form an intermediate basis of the original ideal I, while simultaneously creating a
larger monomial ideal spanned by its leading terms. From this point, the notion of
intermediate basis refers to a set similar to G′ in the Buchberger Algorithm.

There is another criterion for a set of generators to be a Gröbner Basis. This
criterion is used for example in the proof of correctness of the algorithm F4. The
following two important definitions are equivalent. They are both very common
and are included for completeness.

Definition 2.44. [CLO96, p. 100] Fix a monomial order and let G =
{g1, . . . , gm} ⊂ P . Given a polynomial f ∈ P , we say that f reduces to zero
modulo G, written

f →G 0,
if f can be written in the form

f = a1g1 + . . .+ amgm,

such that whenever aigi 6= 0, we have

multideg(f) ≥ multideg(aigi).

Definition 2.45. [BW93, p. 196] The Normal Form r of f with respect to
G is the reflexive-transitive closure of the reduction by elements of G, →G. This

30 2. PRELIMINARIES ON ALGEBRAIC GEOMETRY

means that if there is a reduction chain from f to r by division with elements of
G and r can not be reduced any further by elements of G (with respect to some
monomial ordering), this r is called the Normal Form of f with respect to G.

The new algorithmic criterion is formulated in the following theorem.

Theorem 2.46. Let G be a finite subset of P . G is a Gröbner Basis if and only
if the Normal Form of S(g1, g2) equals 0, or S(g1, g2) →G 0, for all g1, g2 ∈ G.

Proof. See [CLO96, p. 101] or [BW93, p. 211]. �

Many Gröbner Bases can span the same ideal. Nevertheless, the reduced
Gröbner Basis stated in the following definition is a unique representation. For
the uniqueness proof, see [CLO96, p. 90]. Whenever one has obtained a Gröbner
Basis, it is not very hard to compute the reduced Gröbner Basis from it. See for
example [BW93, p. 217] for an explanation of this algorithm.

Definition 2.47. A reduced Gröbner Basis for a polynomial ideal I is a
Gröbner Basis for G such that:

(1) LC(p) = 1 for all p ∈ G;
(2) For all p ∈ G, no monomial of p lies in 〈LT (G− {p})〉.

In [Buc85], Buchberger presents a criterion to cancel redundant intermediate
basis elements during a Gröbner Basis algorithm. The details are not included here,
but the reader is referred to [GM88, p. 283] for a brief explanation.

2.4. Solving systems of polynomial equations

This section explains how to use Gröbner Bases to solve a system of polyno-
mial equations and it provides the algebraic subtleties that are often omitted in
articles on algebraic attacks. We claim that for our purposes, a Gröbner Basis in
lexicographic order will bring the system of polynomial equations in a ‘triangular
form’. This claim is stated explicitly by the Shape Lemma. To prove this lemma
some fundamental properties concerning ideals are introduced.

Definition 2.48. Given I = 〈f1, . . . , fm〉 ⊂ k[x1, . . . , xn], the l-th elimination
ideal Il is the ideal of k[xl+1, . . . , xn] defined by

Il = I ∩ k[xl+1, . . . , xn]

Definition 2.49. A field k is called a perfect field if either its characteristic is
0 or its characteristic is p > 0 and we have k = kp, i.e. every element has a p-th
root in k.

Remark 2.50. Finite fields k = GF (q), where q = pe and e > 0, are perfect
since the map x 7→ xpe−1

provides p-th roots, because (xpe−1
)p = x for all x ∈ k.

It turns out to be important whether the system of equations corresponding
to the cryptographic problem describes a finite set of solutions. The ideal spanned
by the corresponding polynomials of such a system will be called zero-dimensional .
The following proposition provides an algorithmic criterion for finiteness.

Proposition 2.51. [Finiteness Criterion] Let > be an ordering on the mono-
mials T (P) of the polynomial ring P = k[x1, . . . , xn]. For a system of equations
corresponding to an ideal I = 〈f1, . . . , fm〉, the following conditions are equivalent.

2.4. SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS 31

(1) The system of equations has only finitely many solutions;
(2) For i = 1, . . . , n, we have I ∩ k[xi] 6= ∅;
(3) The set of monomials T (P) \ {LT>(f) : f ∈ I} is finite;
(4) The k-vector space P/I is finite-dimensional.

Proof. See [KR00, p. 243]. �

Notice that Buchberger’s Algorithm is able to test condition 3 of Proposition
2.51. Furthermore, this criterion implies that for our cryptographic purposes, ap-
pending the so-called field equations

(2.7) {xq
i − xi : 1 ≤ i ≤ n}

will assure that the ideal is zero-dimensional.
To say something about the possible polynomials occurring in the ideal de-

scribed by a set of polynomials, the following theorem is of great importance. It
states that a polynomial over an algebraically closed field having common zeros with
the polynomials in F = {f1, . . . , fm}, occurs to some power in the ideal spanned
by F .

Theorem 2.52 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field.
If f , f1, . . . , fm ∈ P are such that f ∈ I(V(f1, . . . , fm)), then there exists an integer
e ≥ 1 such that

fe ∈ 〈f1, . . . , fm〉
and conversely.

Proof. See [CLO96, p. 170]. �

Definition 2.53. Let I ⊂ P be an ideal. The radical of I denoted by
√
I, is

the set
{f : fe ∈ I for some integer e ≥ 1} .

Let k denote the algebraic closure of k. Assume we are working with a cryp-
tosystem over k = GF (q), for q the power of a prime p. Suppose F = {f1, . . . , fm} ⊂
k[x1, . . . , xn] and the equations

y1 = f1(x1, . . . , xn)

y2 = f2(x1, . . . , xn)
...

ym = fm(x1, . . . , xn)

describe the relations between the output characters y1, . . . , ym ∈ k and the message
characters x1, . . . , xn ∈ k. This would be similar to a HFE encryption but note that
(a subset of) x1, . . . , xn could also represent the key bits of a blockcipher. Since
the message bits are elements of k, we are not interested in the possible solutions
existing in k \ k. Therefore, appending the set

{xq
i − xi : 1 ≤ i ≤ n}

to F , creates a radical ideal from which the message bits are still solvable. This is
due to Seidenberg’s Lemma.

32 2. PRELIMINARIES ON ALGEBRAIC GEOMETRY

Proposition 2.54 (Seidenberg’s Lemma). Let k be a field, let P = k[x1, . . . , xn],
and let I ⊆ P be a zero-dimensional ideal. Suppose that for every i ∈ {1, . . . , n}
there exists a non-zero polynomial gi ∈ I ∩ k[xi] such that the greatest common
divisor (GCD) of gi and its derivative equals 1. Then I is a radical ideal.

Proof. See [KR00, p.250]. �

By adding the field equations, there exist gi as defined in the foregoing proposi-
tion, which are relatively prime to their derivative. Therefore, the ideal I is radical
and, due to the Finiteness Criterion (Proposition 2.51), zero-dimensional. Further-
more, since xq

i − xi factorizes completely over k, the corresponding variety V does
not contain points p ∈ V with coordinates in k \ k.

Now we are ready to state the Shape Lemma, which shows that the lexico-
graphic Gröbner Basis of the ideal I has a triangular form “after most changes of
coordinates” [BMMT94].

Theorem 2.55. [The Shape Lemma] Let k be a perfect field, let I ⊆ P be a
zero-dimensional radical ideal such that the xn coordinates of the points in V(I) are
distinct. Let gn ∈ k[xn] be the monic generator of the elimination ideal I ∩ k[xn],
and let d = deg(gn).

(1) The reduced Gröbner Basis of the ideal I with respect to the lexicographic
ordering x1 > . . . > xn is of the form

{x1 − g1, . . . , xn−1 − gn−1, gn} ,
where g1, . . . , gn ∈ k[xn];

(2) The polynomial gn has d distinct zeros a1, . . . , ad ∈ k, and the set of zeros
of I is

{(g1(ai), . . . , gn−1(ai), ai) : i = 1, . . . , d} .

Proof. See [KR00, p.257]. �

Gröbner Bases turn out to be one of the most important tools for solving
algebraic systems. The Gröbner Basis of an algebraic system strongly depends on
the choice of the ordering. Different orderings have different advantages. From a
complexity point of view, the best ordering is the Graded Reverse Lex Order from
Definition 2.18. Computing a Gröbner Basis from a Lexicographic Order is often
intractable in large examples where Graded Reverse Lex Order is just able to return
a Gröbner Basis. However, the Lexicographic Order is better suited for computing
solutions to algebraic systems, as we have explained in the Shape Lemma.

There are several ways to convert a Gröbner Basis efficiently from one ordering
to another, like for example the FGLM Algorithm [FGLM93] and the Gröbner
Walk Algorithm [CKM97]. For a zero-dimensional ideal I, the FGLM Algorithm
is proven to have polynomial time complexity in the number of monomials not in
the ideal. Furthermore, it is considered practical. It is also implemented in Magma
as the algorithm of choice for basis conversion.

If the Gröbner Basis G of the ideal I has a triangular form according to the
Shape Lemma, then this means that we have found a univariate polynomial gn in the
intersection of the basis and the (n−1)-th elimination ideal G∩In−1. Factorization
of gn returns solutions for xn, which could be entered in the polynomials of the
intersection G ∩ In−2. Repeating this for all elimination ideals In−3, . . . , I1 gives
the variety describing the message bits.

2.4. SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS 33

Remark 2.56. Univariate polynomial factorization is a challenging problem on
itself. However, we focus on the Gröbner Basis step in the algebraic system solving
since we have reasonable assurance that this will be the most time-consuming step
in the process. Univariate factorization over a small finite field is feasible up to
large degree. Table 2.1 illustrates the average time it takes Magma to factorize
random univariate polynomials into irreducible factors of high degree over GF (28)
by the Berlekamp algorithm, see for example [GG99]. Over small finite fields,
one can also consider partial factorization by exhaustive search on the zeros of the
univariate polynomial. In the case of the BES for example, this would mean trying
all elements of GF (28), which can be done very rapidly.

Table 2.1. Average timings of Magma factorizing a random uni-
variate polynomial of degree d over GF (28), in seconds.

d 400 500 600 700 800 900 1000

time 0.8132 1.1316 1.8767 2.3414 3.3589 4.4704 6.0687

CHAPTER 3

Algebraic attacks on common cryptosystems

The term algebraic attack normally refers to variations on the XL algorithm by
Courtois, Klimov, Patarin and Shamir [CKPS00]. This technique was inspired by
the Relinearization technique adopted by Kipnis and Shamir in the cryptanalysis
of the quadratic systems from HFE [KS99]. The authors prove that XL does the
same computations as Relinearization in a smaller amount of time. XL was not
tested on HFE but simulations were done on a toy system of quadratic equations
by the authors of [CKPS00]. Our simulations with XL applied to HFE lead to
interesting observations, which are explained in Chapter 5.

Two years later, a number of ciphers were described in terms of polynomial
equations by Courtois and Pieprzyk [CP02]. These ciphers included AES. The
authors described a way to compute the complexity of the technique based on an
approximation of the independent equations and monomials needed to extract a
solution. Now, to explain algebraic attacks on the basis of common examples,
HFE and Rijndael are introduced in Sections 3.2 and 3.3 respectively. The alge-
braic attack XL is described in Section 3.4. First, we introduce a small, non-trivial
blockcipher with an S-box similar to AES that can be attacked on a desktop com-
puter.

3.1. A small blockcipher

By tackling the HFE challenge, Faugère and Joux [FJ03] showed that such a
cryptosystem cannot be compared to a random multivariate system in the same
number of unknowns. To illustrate on a desktop computer the differences between
a random system of equations and a system used in cryptology, the algebraic attack
is simulated on HFE and a four byte blockcipher. HFE is scalable in the key length
and the small blockcipher in the number of rounds.

Our blockcipher is depicted in Figure 3.1. Let p be the so-called Rijndael
polynomial x8 + x4 + x3 + x+ 1 ∈ GF (2)[x] and k = GF (2)[x]/〈p〉. The variables
x1, . . . , x4 ∈ k, y1, . . . , y4 ∈ k and k1, . . . , k4 ∈ k are respectively the plaintext,
ciphertext and key bytes. S-boxes are denoted by circles with an S, key addition
by circles with a ‘+’ and intermediate values are depicted by squares with their
corresponding variable. The variables ai, bi, ci, di and ei, for 1 ≤ i ≤ 4, represent
these values.

Remark 3.1. Notice that the key bytes are denoted by indexed k. Please do
not be confused with our standard notation for the finite field, k.

Let us describe the blockcipher in more detail. The blockcipher is depicted as
one round but can be scaled to multiple rounds by copying the states d1, . . . , d4 to
a1, . . . , a4 and thus feeding it to the S-box, the Mixing Layer and the key addition
step several times. This is illustrated by the dashed arrow in Figure 3.1. Similar

35

36 3. ALGEBRAIC ATTACKS ON COMMON CRYPTOSYSTEMS

Figure 3.1. A small blockcipher.

to AES, our S-box satisfies

(3.1) x 7→
{
x−1 if x 6= 0,
0 otherwise.

The linear diffusion layer, or Mixing Layer, is described by ci =
∑

j 6=i bj for 0 ≤
i ≤ 4. Key addition is straightforward.

Suppose our blockcipher consists of one round. Under the assumption that the
S-boxes do not have to ‘invert’ a zero, the equations describing the dependencies
between the intermediate values follow directly from the above. For 1 ≤ i ≤ 4,
these are given by

ai = xi + ki,

aibi = 1,

ci =
∑
j 6=i

bj ,

di = ci + ki,

diei = 1,
yi = ei + ki.

3.1. A SMALL BLOCKCIPHER 37

An encryption can therefore be described as a multivariate quadratic system of 24
equations over GF (28), 8 of which are sparse quadratic equations and 16 are linear
equations.

Now, let us simulate an algebraic key recovery attack on one round of encryption
by this small blockcipher. A key recovery attack assumes the knowledge of the
plaintext and ciphertext and tries to extract the key. Usually, the cipher encrypts
bytes, which are represented by elements in the finite field according to the following
correspondence.

Remark 3.2. Let 0xh be the hexadecimal representation of an integer h, rep-
resented in bits by h0, . . . , h7 ∈ GF (2), p an irreducible polynomial of degree 8, for
example the Rijndael polynomial, and θ a root of p. A byte, denoted by 0xh, is
represented by an element in the finite field k = GF (2)/〈p〉 as

7∑
i=0

hiθ
i.

Example 3.3. The binary representation of byte 0x05 is (0, 0, 0, 0, 1, 0, 1, 0).
This implementation appends the representation of 5 to the representation of 0. In
our GF (28) arithmetic, this byte corresponds to the finite field element θ4 + θ6.

The assumption regarding the S-box holds with approximated probability (1−
1/256)8 ≈ 0.969, for one round of encryption. Hence, it is likely that a key recov-
ery attack on these equations returns a sensible solution. Consider the following
example.

Example 3.4. Set the 4-byte key string (0x13, 0x24, 0x57, 0xac) and plaintext
(0x43, 0x54, 0xfd, 0x23). The 4-byte blockcipher described above returns the ci-
phertext (0x8e, 0xa6, 0x14, 0x34). Hence, the equations over k containing only the
plaintext and ciphertext bytes are

a1 = θ6 + θ + 1 + k1,

a2 = θ6 + θ4 + θ2 + k2,

a3 = θ7 + θ6 + θ5 + θ4 + θ3 + θ2 + 1 + k3,

a4 = θ5 + θ + 1 + k4,

θ7 + θ3 + θ2 + θ = e1 + k1,

θ7 + θ5 + θ2 + θ = e2 + k2,

θ4 + θ2 = e3 + k3,

θ5 + θ4 + θ2 = e4 + k4.

The reduced lexicographic Gröbner Basis G of the complete system of equations
has 24 elements and takes Magma 0.35 second to compute. It has a triangular
form as described in the Shape Lemma, Theorem 2.55, and contains a univariate
polynomial, g24, of degree 41 in the variable k4.

To illustrate this, the set {LT (g) : g ∈ G} consists of all the variables to the first
power and the monomial k41

4 . Since G is a reduced Gröbner Basis, no monomials
of elements of G are divisible by leading terms of other basis elements.

Factorizing the univariate polynomial g24 gives four irreducible components of
respective degrees 1, 6, 16 and 18, all with multiplicity 1. The linear factor k4 +

38 3. ALGEBRAIC ATTACKS ON COMMON CRYPTOSYSTEMS

θ7 + θ5 + θ3 + θ2 corresponds to the last byte of the key string, 0xac. Evaluating the
other elements of the Gröbner Basis at k4 = θ7 + θ5 + θ3 + θ2, returns the complete
solution in the affine space k24. To obtain the complete key, one only needs to
evaluate the three other basis elements that correspond to the key bytes.

Scaling this blockcipher to multiple rounds increases the complexity and the
number of equations in the algebraic representation. Therefore, it is of great interest
to us to approximate the complexity of an algebraic attack as a function of its
number of rounds r or the number of equations and variables involved. For r
rounds, there are 12 + 12r equations and equally many unknowns. Using the same
key for another encryption would result in four more equations than variables, since
the key variables stay unchanged.

We conclude the description of our blockcipher with the equations for multiple
rounds. Let 1 ≤ i ≤ 4, 1 ≤ r′ ≤ r and vir′ denote the variable vi in the r′-th round,
then, under the assumption that no zero is inverted, the r-round cipher satisfies
the equations,

ai1 = xi + ki,

di1 = ai1 ,

dir′ bir′ = 1,

cir′ =
∑
j 6=i

bjr′ ,

dir′ = cir′ + ki,

dir
ei = 1,

yi = ei + ki.

Let us conclude this section with the demonstration of a key recovery attack
for one round of this blockcipher in Magma. The factorization at the end of this
example returns one linear factor, represented as a finite field element where t
is the root of the Rijndael polynomial. This factor corresponds to the solution
of the fourth key bit, which can be substituted in the other three polynomials
corresponding to the other key bits.

Example 3.5 (Analysis of the blockcipher in Magma).
> load "fbbc.m";

Loading "fbbc.m"

> In:=[[f, f], [f, f], [f, f], [f, f]];

> k :=[[1, 3], [2, 4], [5, 7], [a, c]];

> Out:=fbbc(In,k,1);

*********** 4 byte blockcipher ************

Plaintext [

[f, f],

[f, f],

[f, f],

[f, f]

]

Key bytes [

[1, 3],

[2, 4],

[5, 7],

[a, c]

]

3.1. A SMALL BLOCKCIPHER 39

First step a= [t^7 + t^6 + t^3 + t^2 + t, t^7 + t^5 + t^4 + t^3 +

t^2 + 1, t^7 + t^3 + t, t^5 + t^4 + t^2 + 1]

Round 1 Last step e= [t^6 + t^5 + t^3 + t^2+ t, t^5 + t^4 + t^2 +

t + 1, t^6 + t^4 + 1, t^3 + 1]

Return the ciphertext

> F:=fbbcequations(In,Out,1);

> G:=GroebnerBasis(F);

> #G;

24

> // Factorize the last element in the lex Groebner Basis

> f:=Factorization(G[24]);

> // Show f (some lines are omitted)

> f;

[

<k_4 + t^7 + t^6 + t^3 + t, 1>,

<k_4^2 + (t^7 + t^3 + t^2 + 1)*k_4 + t^7 + t^5 + t^4 + t^3 + 1, 1>,

<k_4^2 + (t^7 + t^5 + t^2 + t + 1)*k_4 + t^6 + t^4 + t^3 + t^2, 1>,

<k_4^16 + (t^3 + t^2 + t)*k_4^15 + (t^7 + t^5 + t^2 + 1)*k_4^14 + (t^7 + t^6

...

t^2, 1>,

<k_4^20 + (t^5 + t^2 + t + 1)*k_4^19 + (t^6 + t^5 + 1)*k_4^18 + (t^7 + t^4 +

...

+ 1)*k_4^2 + (t^7 + t^5 + t^4 + 1)*k_4 + t^6 + t^5 + t^4 + t^3 + t^2, 1>

]

> Evaluate(f[1,1],24,0);

t^7 + t^6 + t^3 + t

> // Set variable a equal to the root in GF(2^8) of basis element, G[24]

> a := Evaluate(f[1,1],24,0);

> a;

t^7 + t^6 + t^3 + t

> // Evaluate the last-but-one polynomial, G[23], at k_4=a

> Evaluate(G[23],24,a);

k_3 + t^6 + t^5 + t^4 + t^2 + 1

The complexity of encryption and decryption is linear in the number of rounds,
since one simply needs to apply the S-box and the linear diffusion layer more often.
However, the algebraic key recovery attack becomes much more difficult as is illus-
trated in Table 3.1. On our desktop computer, attacking this blockcipher with the
F4 implementation of Magma 2.11 becomes infeasible for more than three rounds
of encryption.

Table 3.1. Time and memory consumption for an algebraic key
recovery attack on multiple rounds of the blockcipher in Figure
3.1. We used the F4 implementation of Magma 2.11.

rounds time (sec) memory (kb)

1 0.021 400
2 62.419 26, 261

3 25, 533.155 1, 319, 550

40 3. ALGEBRAIC ATTACKS ON COMMON CRYPTOSYSTEMS

3.2. Hidden Field Equations

The HFE cipher was introduced as an improvement of the asymmetric C∗

scheme by Matsumoto and Imai [MI88] to create signatures and perform short
encryptions of short messages. What makes these asymmetric schemes particularly
nice is that they do not rely on the unproven intractability assumption of integer
factorization or the discrete log problem. Therefore, if these assumptions turn out
to be invalid, cryptographers have an alternative problem to base there schemes
on. To further stress its importance, a variation of HFE forms the basis of the
signature scheme Quartz, which is approved by the NESSIE consortium and is able
to produce very short signatures.

This section introduces the HFE scheme, following [Pat96b] and [Kob97],
and explains how to use our Magma implementation. It finishes with statistics
describing an attack with the F4 algorithm, which has been included in Magma
2.11 since May 2004.

Suppose Alice wants to send Bob a secure message and Eve tries to eavesdrop
on their communication. The public key in C∗ and HFE is a set of polynomial
equations over a finite field k in the plaintext variables x1, . . . , xn,

y1 = p1(x1, . . . , xn),

y2 = p2(x1, . . . , xn),
...

yn = pn(x1, . . . , xn).

To encrypt a message (a1, . . . , an) ∈ kn, Alice evaluates the polynomials and obtains
the encrypted tuple y = (y1, . . . , yn), which she can send to Bob. If Eve intercepts
y, she can try to solve the system of equations following from the public key to
recover the plaintext. Initially this should discourage Eve, since this is believed to
be intractable.

Due to a property specific to C∗, Patarin broke the scheme and improved the
setup, which finally lead to HFE. The alphabet of HFE is a finite field, k = GF (q),
of characteristic p for prime p. A part of the secret key in HFE is a polynomial
with a specific shape.

Definition 3.6. If a polynomial f ∈ GF (qn)[x] of degree d satisfies

f(x) =
∑
i,j

βijx
qθij +qφij +

∑
l

αlx
qεl + µ,

for certain parameters βij , αl ∈ GF (qn) and θij , φij and εl ∈ Z≥0, then this
polynomial is referred to as an HFE polynomial .

For an irreducible g(x) ∈ k[x] of degree n, GF (qn) is isomorphic to k[x]/〈g(x)〉
and elements of GF (qn) may be represented as n-tuples over k. A basis, like{
θi : 0 ≤ i ≤ n− 1

}
where θ is a root of polynomial g, determines a correspondence

between the extension field GF (qn) and the vector space kn. Furthermore, the HFE
polynomial f may be represented as a polynomial in n variables x1, . . . , xn ∈ k,

f(x1, . . . , xn) = (p′1(x1, . . . , xn), p′2(x1, . . . , xn), . . . , p′n(x1, . . . , xn)),

3.2. HIDDEN FIELD EQUATIONS 41

where p′i ∈ k[x1, . . . , xn], for i = 1, 2, . . . , n. The p′i are quadratic polynomials due
to the choice of f and the fact that x 7→ xq is a linear function on the extension
field GF (qn).

To prevent ambiguity during decryption, it is necessary to introduce some re-
dundancy in the message to distinguish the correct plaintext from all other possible
solutions. This is due to the following observation. Suppose f(x) = a ∈ GF (qn).
If f consists of only one monomial, it permutes GF (qn), in which case each a gives
rise to exactly one solution x. However, if f consists of more than one monomial
in x, it seems to be difficult to choose f such that it is a permutation and each a
corresponds to one solution. Obviously, there are at most d solutions to f(x) = a.
HFE with one monomial is equivalent to the C∗ scheme by Matsumoto and Imai.

To complete the main ingredients for the basic version of HFE used for encryp-
tion, two functions are introduced. Let s and t be two affine bijections between
vector spaces, kn → kn. These functions can be represented as n-tuples of poly-
nomials in n variables over field k of total degree 1. Therefore it makes sense to
write

t(f(s(x1, . . . , xn))) = (p1(x1, . . . , xn), p2(x1, . . . , xn), . . . , pn(x1, . . . , xn)),

with pi(x1, . . . , xn) ∈ k[x1, . . . , xn] for i ∈ {1, . . . , n}. The polynomials pi are again
quadratic, due to the choice of s and t.

Hence, the complete setup of the basic HFE scheme is as follows:
• Together with the field k and the extension degree n, these polynomials
pi will form the public key of the HFE scheme and can be computed
efficiently;

• The polynomials f , s and t, and the representation of GF (qn) over k make
up the secret key. In [Pat96b, p. 35], Patarin advices to choose f to have
degree at least 17.

• To encrypt the plaintext x = (x1, . . . , xn) ∈ kn, compute the ciphertext
as described above for the C∗ scheme,

y = (p1(x1, . . . , xn), . . . , pn(x1, . . . , xn));

• To decrypt the ciphertext y, find all solutions z to the equation f(z) =
t−1(y) and compute the possibly multiple solutions x′ = s−1(z). Lastly,
use the redundancy to determine which solution x′ corresponds to the real
plaintext x.

To conclude the introduction to HFE, this section finishes with an example. It
illustrates the execution of HFE and its algebraic cryptanalysis. In Chapter 4 on
advanced methods based on Gröbner Bases, Faugère’s F5 technique, which tackles
the first HFE challenge, is discussed in more detail.

Example 3.7. Suppose the field k equals GF (q) for q = 2, set n = 5 and
g(x) = x5 + x4 + x3 + x + 1, then GF (qn) is isomorphic to k[x]/〈g(x)〉. Let θ be
a root of g. The basis

{
1, θ, θ2, θ3, θ4

}
determines the correspondence between the

extension field GF (qn) and the vector space kn. Furthermore, define

A =

1 0 1 1 0
0 1 1 0 1
1 1 0 0 1
0 1 0 1 0
0 0 0 1 1

 , c = (1, 0, 1, 1, 1),

42 3. ALGEBRAIC ATTACKS ON COMMON CRYPTOSYSTEMS

B =

1 0 0 1 1
0 0 1 1 0
1 1 0 0 1
1 1 0 0 0
1 0 0 0 0

 , d = (1, 0, 1, 0, 0),

and the affine transformations s and t by

s(x) = Ax+ c and t(x) = B−1(x− d) for x ∈ kn.

Lastly, set the secret HFE polynomial f(x) = x ∗ x8 + x4 ∗ x16 for elements x in
the extension field GF (25). Note that the terms are written as multiplications of x
having some power of q = 2 in the exponent.

For a plaintext vector x = (x1, . . . , x5) ∈ k5, compute the affine transformation
s(x). Use the basis to represent s(x) ∈ k5 as an element of the extension field and
evaluate f at this point. Next, the public key is created by converting the element
back to a vector and applying the affine transformation t. This leads to the following
equations for the public key y = (y1, . . . , y5) = (p1(x), . . . , p5(x)),

y1 = x2
1 + x1x2 + x1x3 + x1 + x2x5 + x3 + x2

4 + x5 + 1,

y2 = x1x2 + x1x3 + x1x4 + x1x5 + x2x3 + x2 + x2
3

+ x3x5 + x3 + x2
4 + x4 + x2

5 + x5 + 1,

y3 = x2
1 + x1x4 + x1x5 + x1 + x2x3 + x2x5 + x2 + x2

3

+ x3x5 + x4 + x2
5,

y4 = x2
1 + x1x2 + x1x4 + x1 + x2x3 + x2x4 + x2

+ x3x5 + x2
5 + 1,

y5 = x2
1 + x2

2 + x2x3 + x2x5 + x2 + x3x4 + x3x5 + x5.

Assume Alice wants to encrypt plaintext (1, 1, 1, 1, 1) ∈ k5. All she has to do
is evaluate the public key equations at this point. This gives her ciphertext vector
(1, 0, 1, 0, 0), which she can send to Bob.

The algebraic attack by Eve is simple for this small example but encounters the
subtleties discussed in Section 2.4. All Eve has to do is solve a system of equations
for the known (y1, . . . , y5). Computing a reduced lexicographic Gröbner Basis G′

of F = {pi − yi : 1 ≤ i ≤ 5}, will not give her one that satisfies the Shape Lemma,
since it is not zero-dimensional. This is due to the Finiteness Criterion defined
in Proposition 2.51 and the observation that T (k[x1, . . . , xn]) \ 〈LT (F)〉 is infinite,
since the set {LT (g) : g ∈ G} equals

{
x1, x2, x

4
3, x

2
3x4, x

2
3x5, x3x

2
4, x3x

3
5, x

6
4

}
.

Appending the field equations
{
x2

i − xi : 1 ≤ i ≤ 5
}

to the set F will create a
zero-dimensional radical ideal. Hence, the reduced lexicographic Gröbner Basis, G,
of this ideal is

g1 = x1 + x5,

g2 = x2 + 1,
g3 = x3 + x5,

g4 = x4 + x5,

g5 = x2
5 + x5

3.2. HIDDEN FIELD EQUATIONS 43

and the solutions (0, 1, 0, 0, 0), (1, 1, 1, 1, 1) in k5 follow immediately. Notice that
in this case redundancy is necessary to determine which solution corresponds to the
original plaintext, since the x5 coordinates of the points in the affine variety are not
distinct.

Since May 2004 a very efficient implementation of F4 has been included in
Magma 2.11. We ran a simulation on HFE equations for key lengths varying from
10 bits to 30 bits. The secret HFE polynomial was chosen randomly with average
degree 40 and maximal degree 64. For every key length, twenty samples were taken.
The average time and memory consumption on the desktop computer of Remark
1.9 are depicted in Figures 3.2 and 3.3 respectively.

Figure 3.2. Average time to compute a Gröbner Basis with F4.

Figure 3.3. Average process memory usage to compute a
Gröbner Basis with F4.

The least-square fits are also plotted for both data sets. The least-square fits
for respectively the time and memory data equal

0.000118 ∗ 1.53n and 78.6 ∗ 1.32n.

44 3. ALGEBRAIC ATTACKS ON COMMON CRYPTOSYSTEMS

Remark 3.8. The depicted curves for time and memory consumption are close
to optimal. This is due to the following observation similar to Remark 1.10. For
both data sets, we took the natural logarithm of the values and applied a least-
square fit with a linear function. The base number of the exponential fit followed
from the derivative of the linear function.

The simulations suggest that finding a Gröbner Basis with F4 has exponential
complexity with respect to the key length. The algorithm used is due to Allen
Steel, who explains on his website [Ste04] that the performance of the improved
F4 implementation in Magma 2.11 is comparable to the performance of the imple-
mentation described in [Fau99]. Therefore, one could say that this latest Magma
version currently includes one of the fastest Gröbner Basis implementations.

One important claim regarding the complexity of HFE is the following. In
[FJ03], Faugère and Joux show that with their algorithm F5 the degree of inter-
mediate polynomials during the Gröbner Basis computation is kept to a minimum.
This claim is supported by their attack on the 80 bit HFE challenge [Pat96a].
The F5 algorithm did not exceed polynomials of degree 4, while the degree of the
secret HFE polynomial equalled 96. Based on a combinatorial argument specific to
HFE, Faugère and Joux computed the maximal degree of polynomials during the
application of F5 to HFE. This argument was founded with simulations and the
results are summarized in Table 3.2.

Table 3.2. Maximal degree of intermediate polynomials during
the execution of F5, dF5, for secret HFE polynomial of degree d.

d 3 ≤ d ≤ 12 16 17 ≤ d ≤ 96 128 129 ≤ d ≤ 512 513 ≤ d ≤ 1280

dF5 3 3 4 4 5 6

In Section 5.2, we discuss a theoretical lower bound for the largest degree dur-
ing Gröbner Basis computations for random systems of equations. This approach
to approximate a lower bound for algebraic systems of equations seems to become
more widespread. The result by Patarin and Joux exposes the structure hidden in
non-homogeneous HFE equations and does not obey the theoretical lower bound
from Section 5.2. Therefore, it remains questionable in which generality this ap-
proximation is applicable.

Faugère and Joux show [FJ03, p. 56] that F5 applied to HFE has polynomial
complexity in the number of key bits, n. In Section 5.1 we argue that XL is
a cumbersome way of computing a Gröbner Basis for general algebraic systems.
However, we also show that the degree for which XL finds a HFE plaintext stays
constant as the number of key bits increases, a claim derived from the analysis of
dF5 in [FJ03]. This makes the complexity of XL applied to HFE polynomial, as
follows from the discussion regarding the complexity of XL in Section 3.4.

3.3. AES and BES

As mentioned earlier, in Section 1.1, the blockcipher Rijndael [DR99] was
chosen by the National Institute of Standards and Technology as the Advanced
Encryption Standard, AES , as a successor to the Data Encryption Standard (DES).
At this moment, AES is being adopted on a large scale.

At Eurocrypt 2000, Courtois, Klimov, Patarin and Shamir presented the al-
gorithm XL [CKPS00], which was explained later as a possible threat to AES

3.3. AES AND BES 45

[CP02]. The next section deals with XL and its predecessor, Relinearization. In
this section, AES and its simpler algebraic description, BES, are introduced. BES
stands for Big Encryption System.

Murphy and Robshaw list the significant encryption steps clearly in [MR02b,
Chpt. 3]. We shall treat the 128 bit AES according to this description. This section
focusses on a typical round of the cipher. The first and last rounds of AES have a
different but related form. For the full description, the reader is referred to FIPS
197 [Nat01].

The field k = GF (28) can be constructed as GF (2)[x]/〈p〉, defined by the
Rijndael polynomial p(x) = x8 +x4 +x3 +x+1. The basic 128 bit AES encrypts a
16 byte block using a 16 byte key with 10 encryption rounds. The input of AES can
be viewed as a square array of bytes. One round of encryption in AES is specified
by the following three transformations:

(1) The AES S-box The value of each byte in the array is substituted accord-
ing to a table look-up S, which is a combination of three transformations:
(a) The input w is ‘inverted’ as in Equation 3.1 in Section 3.1. The result

is denoted by x;
(b) The intermediate value x is regarded as a GF (2) vector of dimension

8 and transformed using a square matrix LA. The transformed vector
LAx is then regarded in the natural way as an element of k;

(c) The output of the S-box is LAx+0x63, where addition is with respect
to GF (2).

(2) The AES linear diffusion or mixing layer
(a) Each row of the array is rotated by a certain number of byte positions;
(b) Each column of the array is considered to be a vector y ∈ k4 and is

transformed to the column Cy, by the square matrix C.
(3) The AES subkey addition Each byte of the array is added to a byte

from the corresponding array of round subkeys.

Similar to our small blockcipher, the AES S-box sometimes needs to invert a
zero. For the standard 128-bit AES, this happens in approximately 53% of the
encryptions. Therefore, like in Section 3.1, an algebraic description of AES that
neglects the zero mapping by the S-box, is unreliable with this probability, which
is considered fair for the purpose of cryptanalysis.

As we have seen in the description of HFE, it is common in cryptography to
switch between representations of a byte. At one moment, it is interpreted as an
element of the finite field GF (28), while at another moment the byte is represented
by a vector over GF (2). The 128 bit AES is a blockcipher that encrypts 16 bytes
simultaneously, while switching back and forth between both representations of a
byte. In particular the use of the GF (2)-linear operation in the S-box makes it
harder for the cryptanalyst to translate the cipher in simple algebraic equations.

However, by mapping an element in the state space of AES to its vector con-
jugate, Murphy and Robshaw were able to create BES , a simpler equivalent repre-
sentation of AES in terms of the algebraic description, than, for example, Courtois
and Pieprzyk discussed in [CP02]. We give a brief description of BES and explain
the correspondence between typical AES and BES encryptions.

46 3. ALGEBRAIC ATTACKS ON COMMON CRYPTOSYSTEMS

Definition 3.9. For any element a ∈ k, we can define the vector conjugate of
a as the eight GF (2)-conjugates,

φ(a) = (a20
, a21

, . . . , a27
),

where φ : GF (28) → GF (28)8 is called the vector conjugate mapping . For a′ ∈ kn

this definition extends in the natural way to a mapping from vector space kn to
k8n componentwise,

φ(a′) = (φ(a′0), φ(a′1), . . . , φ(a′n−1)).

The vector conjugate mapping is additive and preserves inverses.

Definition 3.10. When each successive set of eight components in a ∈ k8n

forms an ordered set of GF (2)-conjugates, a has the conjugacy property .

Now, the vector conjugacy mapping gives a natural embedding of the AES state
space in the BES state space. To be precise, the AES subset of states of BES is
a subset of φ(k16) ⊂ k128. The description of the BES rounds is actually an affine
transformation of the componentwise inverse of an element b in the BES state space
k128,

RoundBES(b, kBESi) = MBESb
−1 + kBESi ,

whereMB is a (128×128) matrix over k performing linear diffusion within BES. The
variable kBESi

is the i-th round key and inversion is interpreted as in expression
(3.1). Now, an AES plaintext a ∈ k16 can be encrypted equivalently by the BES
cipher,

RoundAES(a, kAESi
) = φ−1(RoundBES(φ(a), φ((kAESi

))).

The key schedule uses the same operations as the AES encryptions and can be
described by similar algebraic operations over k.

Each of the BES operations, namely the inversion and the affine transformation
over k, are algebraic transformations of elements in vector space k128. Let the
plaintext and ciphertext be denoted by respectively p and c ∈ k128 respectively and
the state vectors before and after the i-th application of the inversion layer by wi

and bi ∈ k128 respectively. With the necessary notation in place, a multivariate,
quadratic system for BES satisfies,

w0 = p+ k0,

xi = w−1
i , for i = 0, . . . , 9,

wi = MBESxi−1 + ki, for i = 0, . . . , 9,

c = M ′
BESx9 + k10,

where M ′
BES is slightly different from MBES , since the final round in BES does not

mix the columns similarly to the matrix C in the above description of AES.
Let the (8j+m)-th component of xi, wi and ki be denoted by xi,(j,m), wi,(j,m)

and ki,(j,m) ∈ k and the matrices MBES and M ′
BES over k128 by (α) and (β).

Following from the algebraic description, the following system of very sparse multi-
variate quadratic equations over the finite field k describes a BES encryption. For

3.4. RELINEARIZATION AND XL 47

j ∈ {0, . . . , 15}, m ∈ {0, . . . , 7} these are given by

0 = w0,(j,m) + p(j,m) + k0,(j,m),

0 = xi,(j,m)wi,(j,m) + 1, for i = 0, . . . , 9,(3.2)

0 = wi,(j,m) + ki,(j,m) +
∑
j′,m′

α(j,m),(j′,m′)xi−1,(j′,m′), for i = 0, . . . , 9,(3.3)

0 = c(j,m) + k10,(j,m) +
∑
j′,m′

β(j,m),(j′,m′)x9,(j′,m′).

When considering an AES encryption in the BES framework, one can add the
equations

x2
i,(j,m) + xi,(j,m+1) = 0, w2

i,(j,m) + wi,(j,m+1) = 0,

for i ∈ {0, . . . , 9}, since those state variables satisfy the conjugacy property.
AES and BES are scalable. Simply increasing the number of rounds implies

more equations defining the encryption. To simulate algebraic attacks on AES, one
could scale down the number of rounds. However, there will still be a lot of equa-
tions to take into account since the mixing layer, corresponding to Expression (3.3),
involves a large number of variables. This implies an increase in quadratic equa-
tions, because these variables correspond to S-box inversions defined in Expression
(3.2). Since the corresponding algebraic systems are huge, the small blockcipher of
Section 3.1 and a scalable version of HFE are implemented in Magma to investigate
the behavior of various Gröbner Basis algorithms on cryptosystems. The Magma
code is included in Appendix A.

3.4. Relinearization and XL

In their attack on HFE, Kipnis and Shamir [KS99] describe a technique called
Relinearization to solve a system of equations. In this section, Relinearization is
briefly described and shown to be related to XL. Next, XL is studied in more detail
and the complexity estimations by the authors of [CKPS00] are presented.

Let k be a finite field and suppose we have a system of quadratic polynomi-
als F = {f1, . . . , fm} ⊂ k[x1, . . . , xn] representing a cryptosystem. The original
Linearization technique regards all monomials xixj as new variables yij , thereby
obtaining a linear system that does not have full rank in general. If the number
of distinct monomials in the original system, T (F), equals the number of linear
independent equations, the system is solvable by Linearization.

Relinearization is based on the observation that it might be possible to solve
this newly obtained linear system by adding trivial equations of the form

(xaxc)(xbxd) = (xaxd)(xbxc)

for 1 ≤ a ≤ b ≤ c ≤ d ≤ n and thus obtaining a system that can be linearized again.
Since only four variables are considered in these extra constraints, this is called
fourth degree Relinearization. Similarly, one could choose to add the equations
describing the associativity and commutativity in more variables. The following
proposition states the number of equations added by this technique. Because it
was omitted in [KS99], it is included here.

Proposition 3.11. The number of extra equations of the form

(xaxc)(xbxd) = (xaxd)(xbxc),

48 3. ALGEBRAIC ATTACKS ON COMMON CRYPTOSYSTEMS

for 1 ≤ a ≤ b ≤ c ≤ d ≤ n, that are created by Relinearization as described above,
is

2
(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)
=

1
12

(n4 − n2).

Proof. The number of ways to choose four different indices a, b, c, d equals(
n
4

)
. Then (xaxb)(xcxd) can be parenthesized in two other ways, namely

(xaxb)(xcxd) = (xaxc)(xbxd) = (xaxd)(xbxc).

Similarly, after choosing three different indices, this expression can be parenthesized
in three more ways. After choosing two different indices, there remains only one
other way to place the parentheses. �

In [CKPS00], Courtois, Klimov, Patarin and Shamir show that many of the
equations generated by Relinearization are linearly dependent and that the algo-
rithm is therefore less efficient. To solve this problem, they introduce Extended
Linearization, or XL, which is proven to be simpler and more powerful than Relin-
earization. The following is a description of XL.

Definition 3.12. [CKPS00, p. 6] Let F = {f1, . . . , fm} ⊂ k[x1, . . . , xn] be
the polynomials in the algebraic description of a cryptosystem. For a parameter
D ∈ Z≥0, the XL algorithm is described as follows.

(1) Multiply Generate all the products xαfi, for α ∈ Zn
≥0 of total degree

≤ D;
(2) Linearize Consider each monomial xα, α ∈ Zn

≥0, of degree ≤ D as a new
variable and perform Gaussian elimination on the equations obtained in
Step 1. The ordering on the monomials must be such that all the terms
containing one variable, say xn, are eliminated last;

(3) Solve If D is chosen such that Step 2 yields at least one univariate equa-
tion in the powers of xn, then solve this equation over the finite field k,
for example with Berlekamp’s algorithm;

(4) Repeat Simplify the equations with the solutions from Step 3 and repeat
the process to find the values of the remaining variables.

Let us illustrate this with an example. HFE encrypts the 4-bit plaintext
(1, 1, 0, 1) with a random secret key and returns the ciphertext y and public key F .
XL is applied to F with the field equations included and D = 3. The columns of
the matrix representing the monomials are ordered using Lexicographic ordering.
The algorithm finds four univariate polynomials with single roots in GF (2). These
roots correspond to the plaintext. Lastly, it returns the set of original polynomials,
with the solutions substituted into them.

Example 3.13 (XL applied to HFE in Magma).
> load "XL.m";

> load "HFE.m";

> y, F:= HFEencrypt([1,1,0,1]);

> // Apply XL to F for degree 3

> S:=XL(F,3);

...

> // Print the solution found by XL

> S;

[[4, 1], [3, 0], [2, 1], [1, 1]]

3.4. RELINEARIZATION AND XL 49

Remark 3.14. The parameter D is kept fixed in the original description of
XL. By doing this, the authors keep the description of the XL algorithm very
general. However, using the set of equations corresponding to degree D obtained
after Gaussian reduction in Step 2 as input of a run of the algorithm for degree
D′ = D + 1, would create an incremental version of the algorithm. Similar to the
normal selection strategy introduced in Section 4.2, one could also choose the lowest
possible D′. This is discussed in Section 5.1.

During the course of the algorithm, the most time-consuming step is Gaussian
elimination of the matrix representing all polynomials generated in the first step
of the algorithm. The parameter D mainly determines the size of this matrix,
therefore being a very important variable in the expression for complexity. Until
recently, the correct D that solves the system of equations was approximated by
experiments.

Definition 3.15. For a set of equations, the variable dmin refers to the smallest
degree at which XL finds a complete or partial solution.

If the number of original equations m equals the number of variables n like
with HFE, the authors suggest to choose D ≈ 2n. However, “if m = n + 1, then
D = n and if m is larger [the authors] expect to have D ≈

√
n”, see [CKPS00, p.

10]. This statement is based on the following proposition.

Proposition 3.16. Let F = {f1, . . . , fm} ⊂ k[x1, . . . , xn] be a set of m qua-
dratic polynomials describing a problem in cryptography. Under the assumption
that almost all of the equations of the form xαfi of degree ≤ D generated by XL
are linearly independent, XL has estimated complexity

O((
nD

D!
)ω) with D = O(

n√
m

) and ω = 2.376.

Proof. The number of monomials of degree ≤ s in k[x1, . . . , xn] is
(
n+s

s

)
, thus

the number of generated equations of degree ≤ D in Step 1 of XL is of order

O(
nD−2

(D − 2)!
·m),

while there are about

O(
nD

D!
),

linearized variables in Step 2. Hence, under the assumption that the generated
equations are linearly independent, Gaussian reduction in Step 2 is expected to
return a univariate polynomial if the number of equations equals the number of
monomials, or equivalently, for those D of order

O(
n√
m

).

Gaussian reduction has exponential complexity in the size of the matrix. The
complexity exponent equals ω = 2.376 for the fastest method based on the matrix
multiplication algorithm by Coppersmith and Winograd published in [CW90]. �

Two observations weaken the claims of Proposition 3.16. First, assuming that
most of the equations generated by XL are linearly independent seems a miscon-
ception. Based on simulations, the designers of XL [CKPS00, pp.7,8] and Moh

50 3. ALGEBRAIC ATTACKS ON COMMON CRYPTOSYSTEMS

[Moh01, p.6] present a ratio between the number of linearly independent equations
and the total number of equations generated in the first step of XL. They show that
this ratio decreases for increasing values of D at which XL returns a solution. This
is summarized in Table 3.3.

Table 3.3. The ratio between the number of linearly independent
equations and the total number of equations generated by the first
step of XL.

D 4 5 6 7 10 14 16

average ratio 0.8625 0.7141 0.6146 0.5186 0.4856 0.4181 0.3900

The second observation comes from [MR02b] and [Moh01]. Murphy and
Robshaw mention that the number of linearly independent equations can never
exceed the number of monomials. A trivial notion that seems to be overlooked
by the designers of XL. In practice, the difference between the number of linearly
independent polynomials and the size of the support stalls at some point, since
some monomials are not included in the ideal. This happens for example when
HFE has multiple plaintexts corresponding to a ciphertext. In this case, there are
variables, xi, at which solutions differ and the monomial xi is not included in the
ideal.

Furthermore, Moh shows that XL probably finds a solution if the difference be-
tween the number of independent equations and the number of monomials becomes
smaller than D or D + 1, depending on whether there are constant terms in the
system of equations. This is discussed in detail in Section 5.2.

The conjectured sub-exponential behavior of XL for overdetermined systems is
a strong claim. To sketch how much time it takes an efficient implementation in
C or C++ to solve an algebraic system, we plotted the time it took Magma to do
the matrix reduction during XL in Figure 3.4. The abbreviation MQ(n,m) stands
for m random multivariate, quadratic equations in n variables. These random
quadratic equations are homogeneous and the corresponding matrices, therefore,
sparser than with HFE.

The sub-exponential behavior of barely overdetermined systems, leads to a vari-
ation of XL called Fixed XL, or FXL. This algorithm is identical to XL but with
some variables fixed to get an overdetermined system of equations. Similarly, Ex-
tended Sparse Linearization, or XSL, is another variation on the same theme. It is
based on the suspicion that a good selection criterion is to use products of mono-
mials that already appear in other equations. Similarly, during the construction
of S-polynomials in the Buchberger Algorithm, one cancels two leading terms by
multiplying with their least common multiple.

In Chapter 5, we show that applying XL is essentially a cumbersome way
of calculating a Gröbner Basis. In this field of mathematics, the way to choose
which monomials to multiply with the original polynomials is extensively studied.
Therefore, this report continues with an explanation of advanced techniques for
Gröbner Basis computations.

3.4. RELINEARIZATION AND XL 51

Figure 3.4. The average time it takes Magma 2.11 to row reduce
a matrix generated by the XL algorithm (50 samples).

CHAPTER 4

Advanced Gröbner Bases techniques

To investigate the vulnerability of cryptosystems to algebraic attacks, we stud-
ied some of the most promising tools for solving systems of algebraic equations.
We noticed that the cryptanalysis tool XL was very similar to existing Gröbner
Basis techniques. This idea was later confirmed by the appearance of the article by
Sugita, Kawazoe and Imai [SKI04] on the IACR e-print server in May 2004. The
authors will present these results at AsiaCrypt 2004 in a joined work with Faugère
and Ars.

In this chapter, we explain how algorithms for finding Gröbner Bases are related
to Gaussian elimination. This is done by extending the application of linear algebra
to find resultants in Section 4.1. Secondly, the normal selection strategy is discussed
by means of the Homogeneous Buchberger Algorithm in Section 4.2. Then, in
Section 4.3 Faugère’s algorithm F4 is introduced, which is a leading algorithm for
finding Gröbner Bases. Finally, two improved selection strategies are explained in
Section 4.4, being the Gebauer and Möller Installation and the one introduced with
F5.

4.1. Linking Gröbner Bases and linear algebra

The link between finding a Gröbner basis and linear algebra is introduced by
Lazard in [Laz83]. A good way to understand the similarity is by considering the
simplest case of two univariate polynomials,

f = a0 + a1x+ . . .+ alx
l, al 6= 0,

g = b0 + b1x+ . . .+ bmx
m, bm 6= 0.

In this case, the standard method for computing a Gröbner basis is exactly the
Euclidean algorithm for GCD’s and resultants, see for example [CLO96]. The sec-
ond way to compute the resultant is by evaluating the determinant of the Sylvester
matrix, as defined in Definition 4.1. For this purpose, Gaussian elimination has
complexity O((deg(f) + deg(g))3). The following simple modification gives an al-
gorithm equivalent to Euclid’s one with O(deg(f)deg(g)) complexity.

53

54 4. ADVANCED GRÖBNER BASES TECHNIQUES

Definition 4.1. The following m + l by m + l matrix is called the Sylvester
matrix .

al bm
al−1 al bm−1 bm

al−2 al−1

.
.
. bm−2 bm−1

.
.
.

.

.

.
.
.
. al

.

.

.
.
.
. bm

.

.

. al−1

.

.

. bm−1
a0 b0

a0

.

.

. b0

.

.

.

. .
.

. .
.

a0 b0

This matrix has m columns with the coefficients ai of f and l columns with

coefficients of bi of g. The columns of the Sylvester matrix can be interpreted as
representations of the univariate polynomials xif(x) for i ∈ {0, . . . ,m− 1} and
xjg(x) for j ∈ {0, . . . , l − 1}.

The Gaussian method starts with subtracting the first column from the (m+1)-
th one bm/al times. If m ≥ l, the same computations allow us to subtract the i-th
column from the (m + i)-th one bm/al times, for i ∈ {1, . . . , l}. This operation
can be interpreted as replacing the coefficients of g by h = g − (bm/al)xm−lf . In
this case the Sylvester determinant of f and g is reduced to al times the Sylvester
determinant of f and h. If we iterate this proces, we simulate Euclid’s algorithm in
the reduction of a Sylvester matrix. On the other hand, Euclid’s algorithm can be
viewed as a way to save memory and time in the reduction of a Sylvester matrix.

Now, the correspondence between ideals and infinite linear bases is put forward.
Let P be the polynomial ring k[x1, . . . , xn] over a field k and I = 〈f1, . . . , fm〉 an
ideal generated by the polynomials fi ∈ P, 0 ≤ i ≤ m. As a k-vector space, I is
generated by the

(4.1) xαfi for all i ∈ {1, . . . ,m} and α ∈ Zn
≥0.

A property of Gröbner Bases is that they provide a finite description of the
linear basis of I. This is stated in the following proposition. It turns out to be
useful to compute the vector space dimension of elements in the ideal up to a given
degree.

Proposition 4.2. [Laz83, p.148] The set F = {f1, . . . , fm} ⊂ P = k[x1, . . . , xn]
is a Gröbner Basis for the ideal I = 〈F 〉 if and only if the following set of polyno-
mials, B, is a basis of the vector space corresponding to I,

(4.2) B =
{
xαfi : 1 ≤ i ≤ m,α ∈ Zn

≥0 and not LM(fj)|LM(xαfi) for j < i
}
.

On the basis of P consisting of all monomials T (P), the generating set from
(4.2) defines a possibly infinite matrix, which has the following properties:

(1) The number of non-zero entries of each row are finite and consist of coef-
ficients of one of the fi’s;

(2) Each column has a finite number of non-zero entries. If the column corre-
sponds to some monomial xα, then the non-zero entries must correspond
to generators xβfi where xβ |xα, α, β ∈ Zn

≥0.
As in the Sylvester matrix, polynomials are represented as tuples of coefficients

for every occurring monomial. However, we choose to switch the interpretation of

4.2. HOMOGENEOUS BUCHBERGER ALGORITHM 55

rows and columns, since the original description of the algorithm F4 uses matrices
of this form.

In Section 4.3, this representation will be used to reduce polynomials during
a Gröbner Basis computation. Before we continue with the description of F4, the
Homogeneous Buchberger Algorithm is introduced.

4.2. Homogeneous Buchberger Algorithm

The Homogeneous Buchberger Algorithm forms a framework for many ad-
vanced algorithms to compute Gröbner Bases and enables us to calculate Gröbner
Bases for parts of ideals up to elements of a certain degree.

Definition 4.3. A polynomial f in P = k[x1, . . . , xn] is called homogeneous
of total degree d if every term appearing in f has total degree d. For general g ∈ P ,
the homogenous component of degree d of g is the sum of terms having total degree
d.

Definition 4.4. I is said to be a homogeneous ideal if for each f ∈ I, the
homogeneous components are in I as well.

While it seems straightforward to compute a Gröbner Basis degree by degree,
it is remarkable that the problem of writing down the algorithm in full detail is
hard to find in the literature. We follow the explanation of the draft of the book
Computational Commutative Algebra 2 [KR04], which can be obtained from the
authors Kreuzer and Robbiano.

Proposition 4.5. Let P be a polynomial ring and I ⊂ P an ideal generated
by the set of homogeneous polynomials F = {f1, . . . , fm}.

• Buchberger’s Algorithm applied to F , returns a homogeneous Gröbner Ba-
sis of I;

• The reduced Gröbner Basis of I consists of homogeneous vectors.

Proof. See [KR04, p. 81]. �

Theorem 4.6 (Homogeneous Buchberger Algorithm). Let {f1, . . . , fm} be a set
of homogeneous polynomials spanning the ideal I. Then a Gröbner Basis for I can
be constructed in a finite number of steps by the following algorithm.

• Input: F = {f1, . . . , fm}
• Output: A tuple G = (g1, . . . , gs′), the elements of which satisfy

totaldeg(g1) ≤ totaldeg(g2) ≤ . . . ≤ totaldeg(gs′)

and form a Gröbner Basis of the ideal I.
(1) B := {} , G = () and s′ := 0
(2) REPEAT
(3) d1 := min {totaldeg(f) : f ∈ F}
(4) d2 := min {totaldeg(LCM(LT (gi), LT (gj))) : (i, j) ∈ B}
(5) d := min {d1, d2}
(6) Bd := {(i, j) ∈ B : totaldeg(LCM(LT (gi), LT (gj))) = d}
(7) B := B \Bd

(8) Fd := {f ∈ F : totaldeg(f) = d}
(9) F := F \ Fd

(10) REPEAT

56 4. ADVANCED GRÖBNER BASES TECHNIQUES

(11) IF Bd = {} , THEN choose f ∈ Fd and delete it from Fd

(12) ELSE
(13) Choose a pair (i, j) ∈ Bd, delete it from Bd

(14) f := S(gi, gj)
(15) IF f

G
= 0 THEN continue with Step 10

(16) ELSE
(17) s′ := s′ + 1
(18) gs′ := f

G
and append gs′ to G

(19) Add pairs (1, s′), . . . , (s′ − 1, s′) to B
(20) UNTIL Bd = {} or Fd = {}
(21) UNTIL B = {} or F = {}
Proof. See [KR04, p.83]. �

Remark 4.7. The description of the Homogeneous Buchberger Algorithm in
[KR04, p.83] is more general in that it holds in the case of any positively graded
module and chooses the degree of the critical pairs by lowest multidegree with
respect to the lexicographic ordering, instead of lowest total degree.

Let the elements of an ideal I with degree less than or equal to d be denoted by
I≤d. The Homogeneous Buchberger Algorithm is able to compute a basis with the
same properties as a Gröbner Basis restricted to the elements in I of degree ≤ d.

Definition 4.8. Let G be the result of the Homogeneous Buchberger Algo-
rithm for the ideal I. The elements in G of total degree ≤ d form the set G≤d,
which shall be referred to as a d-truncated Gröbner Basis of the ideal I.

In [BW93] the distinction between the homogeneous and non-homogeneous
case is made by calling Definition 4.8 a D-Gröbner Basis at page 455 and Definition
4.9 a d-Gröbner Basis at page 473. In a non-homogeneous context, a d-truncated
Gröbner Basis can be characterized as follows.

Definition 4.9. Let G be a finite subset of the ideal I ⊂ P . G is called a
d-truncated Gröbner Basis of the ideal I if for all f , g ∈ G with total degree of the
corresponding critical pair less than or equal to d, the S-polynomial S(f, g) reduces
to zero by G.

If the Homogeneous Buchberger Algorithm is interrupted after some degree
d is finished, the elements of G form a truncated Gröbner Basis G≤d. The vital
property of such a basis is formulated in the following proposition.

Proposition 4.10. Let G be a set of non-zero homogeneous polynomials that
generate the ideal I ⊂ P , and let d ∈ Z≥0. Then the following conditions are
equivalent:

(1) G≤d is a truncated Gröbner Basis of I;
(2) Every homogenous element f ∈ I≤d satisfies

∃g ∈ G≤d : LT (g)|LT (f).

Proof. See [KR04, p.87]. �

The strategy of selecting critical pairs in increasing degree, adopted in the
description of the Homogenous Buchberger Algorithm, is called the normal selection
strategy . This strategy helps to reduce the computations during the reduction of
S-polynomials, due to the following theorem.

4.3. REDUCTION BY LINEAR ALGEBRA, F4 57

Theorem 4.11. Let I be an ideal in k[x1, . . . , xn], F := {f1, . . . , fm} a homo-
geneous basis of I. Let a Gröbner Basis of I be computed from F by an algorithm
that treats critical pairs by increasing degree (e.g. the normal selection strategy). If
during the algorithm an S-polynomial either has degree less than or is reduced to a
degree less than the corresponding critical pair, then it eventually reduces to 0. As
a consequence:

(1) whenever during a reduction-loop the degree is decreased, the reduction
can be interrupted since it will eventually end with 0;

(2) new basis elements appear in increasing degrees.

Proof. See [Tra97, p.359]. �

The Homogeneous Buchberger Algorithm returns a correct Gröbner Basis for
sets of polynomials that are not homogeneous either. Hence, it can be used as a
framework for other improvements on the Buchberger Algorithm, like F4. Faugère
advices to implement his F4 with the normal selection strategy. The following
section introduces the algorithm with this strategy taken into account.

4.3. Reduction by linear algebra, F4

The algorithm F5 introduced in [Fau02] is based on an efficient selection crite-
rion for critical pairs, combined with a reduction strategy based on linear algebra.
This reduction strategy was introduced by Faugère in an earlier algorithm called
F4 [Fau99]. In this section, the main ideas of F4 are explained in detail.

Normally, a reduction strategy consists of two parts. First of all, one needs an
order in which to select the critical pairs to reduce. In the Buchberger Algorithm,
this choice determines which reduced S-polynomials are added to the intermediate
basis, which affects the new reductions during the course of the algorithm. Secondly,
as in the Division Algorithm, one has a choice to which order of elements in the
intermediate basis the new-found S-polynomials are reduced.

Instead of creating reduced S-polynomials one-by-one, the main idea of F4 is to
reduce a set of critical pairs simultaneously, with respect to a preprocessed subset
of the intermediate basis, called reductors. The theory behind the creation of re-
ductors originally stems from the Normal Form subroutine in the FGLM algorithm
[FGLM93].

For convenience, a correspondence between sets of polynomials and matrices is
defined.

Definition 4.12. Let F = (f1, . . . , fm) be a tuple of polynomials in P =
k[x1, . . . , xn] and let T (F) and Tσ(F) denote the set of pairwise distinct monomials
in F and its ordered equivalent, with respect to ordering σ, respectively. The
number of distinct monomials in F , |T (F)|, is denoted by s.

Let a general polynomial f ∈ P be written as

f =
s∑

i=1

cix
αi , with αi ∈ Zn

≥0 and ci ∈ k.

Define the vector representation map

ψTσ(F) : P → ks

of f with respect to Tσ(F) as follows

ψTσ(F)(f) = (c1, . . . , cs)

58 4. ADVANCED GRÖBNER BASES TECHNIQUES

and the matrix representation of a tuple of polynomials F

ΨTσ(F) : Pm →Matm,s(k), (f1, . . . , fm) 7→

ψTσ(F)(f1)
...

ψTσ(F)(fm)

 .

If it is clear from the context with respect to which ordering and support the
polynomials are represented, the subscripts are omitted.

The following definition of the matrix F̃+ is the F4-equivalent of reduced S-
polynomials in the Buchberger Algorithm.

Definition 4.13. Let F be a subset of polynomial ring P . Define
• The set of polynomials corresponding to the row echelon form of Ψ(F) is

denoted by F̃ ;
• Let F̃+ denote

{
g ∈ F̃ : LT (g) 6∈ LT (F)

}
.

The elements of F̃+ are joined with a subset, H, of the original F , such that

LT (H) = LT (F) and |H| = |LT (F)|

hold. As a consequence of the following theorem, the ideal 〈F 〉 is spanned by
H ∪ F̃+.

Theorem 4.14. [Fau99, p. 65] Let k be a field, F a finite set of elements
P = k[x1, . . . , xn] and let s denote the cardinality of the support Tσ(F).

For any subset H ⊆ F such that |H| = |LT (F)| and LT (H) = LT (F), the
vectors

ψ(g) ∈ ks, for g ∈ F̃+ ∪H,
form a triangular basis of the subspace of the vector space ks spanned by the vectors
ψ(f) for f ∈ F .

Proof. WriteG = F̃+∪H. All elements g ofG have distinct leading terms and
are linear combinations of elements of F . Hence, the set {ψ(g) : g ∈ G} is linearly
independent and is included in the subspace spanned by the vectors corresponding
to elements of F .

Furthermore, let r denote the rank of the subspace spanned by ψ(f) for f ∈ F .
Also,

LT (G) = LT (F̃+) ∪ LT (H) = LT (F̃)

holds, which implies |LT (G)| = |LT (F̃)| = r and the theorem follows. �

The main idea of F4 is rooted in the reduction of S-polynomials. Instead of
computing the reduction of every S-polynomial individually, it creates a selection
of critical pairs b = (b1, b2), for b1, b2 in the intermediate basis G′ and passes the
two polynomials

LCM(LT (b1), LT (b2))
LT (b1)

b1,
LCM(LT (b1), LT (b2))

LT (b2)
b2

to the reduction function. Let us assume the normal selection strategy is adopted.
The critical pairs corresponding to degree d are

Bd = {(b1, b2) : b1, b2 ∈ G′ where totaldeg(LCM(LT (b1), LT (b2))) = d, b1 6= b2} .

4.3. REDUCTION BY LINEAR ALGEBRA, F4 59

Hence, the following set is passed to the simultaneous reduction routine of F4,

(4.3) Ld =
⋃

(b1,b2)∈Bd

{
LCM(LT (b1), LT (b2))

LT (b1)
b1,

LCM(LT (b1), LT (b2))
LT (b2)

b2

}
.

The reduction in F4 uses preprocessed reductors of an intermediate basis G′.
The addition of reductors is done by a routine called Symbolic Preprocessing.

Definition 4.15. During the execution of an algorithm to compute Gröbner
Bases, a reductor r of the set F is a polynomial satisfying

LT (r) ∈ T (F) \ LT (F).

Definition 4.16. [Symbolic Preprocessing] The following algorithm appends
reductors to the set F with respect to an intermediate basis G′.

• Input: A set F ⊂ P and an intermediate basis G′.
• Output: The set F ∪R for a set of reductors R.

(1) D := LT (F), R := {}
(2) WHILE T (F ∪R) 6= D DO
(3) Select m ∈ T (F ∪R) \D
(4) Append m to D
(5) IF LT (m) is divisible by an element g ∈ LT (G′)
(6) m′ := m/LT (g)
(7) Append gm′ to R

Now we are ready to formulate the function F4 that simultaneously reduces
polynomials corresponding to several critical pairs.

Definition 4.17 (ReductionF4). The subroutine ReductionF4 returns F̃+,
where F is the output of the subroutine Symbolic Preprocessing for a set Ld, as
defined in Equation (4.3), with respect to intermediate basis G′.

S-polynomials that do not reduce to zero in the Buchberger Algorithm, extend
the ideal spanned by the leading terms of the intermediate basis. This way, an
ascending chain of leading term ideals is obtained. Similarly, the leading terms of
the elements of F̃+ contribute to the ideal spanned by the leading terms of the
intermediate basis. This is formalized in the following lemma.

Lemma 4.18. Let F̃+ denote the output of ReductionF4 applied to Ld with
respect to G′. For all f ∈ F̃+, LT (f) is not an element of 〈LT (G′)〉.

Proof. Let f be in F̃+ and the output of Symbolic Preprocessing of Ld with
respect to G′ be denoted by F . Suppose, to achieve a contradiction, that LT (f) ∈
〈LT (G′)〉. This assumption and LT (f) ∈ T (F̃+) ⊂ T (F) implies that Symbolic
Preprocessing must have added a reductor LT (f)

LT (g) g to F for a suitable g ∈ G′. This

would mean LT (f) ∈ LT (F), a contradiction according to the definition of F̃+.
Hence, LT (f) is not an element of 〈LT (G′)〉. �

The next lemma assures that the elements that are added to the intermediate
basis, are members of the ideal 〈G′〉.

Lemma 4.19. Let F̃+ be as in Lemma 4.18. Then F̃+ ⊂ 〈G′〉.

60 4. ADVANCED GRÖBNER BASES TECHNIQUES

Proof. Every f ∈ F̃+ is a linear combination of elements of Ld and reductors
R, which are both subsets of 〈G′〉. �

The following lemma states that all S-polynomials in the set of possible k-linear
combinations of Ld reduce to zero by a subset of F̃+ ∪ G′. This is used to prove
the correctness of the algorithm by the criterion stated in Theorem 2.46.

Lemma 4.20. Let F̃+ be as in Lemma 4.18. For all k-linear combinations, f ,
of elements of Ld, the Normal Form equals zero with respect to F̃+ ∪G′.

Proof. Let f be a linear combination of elements of Ld. Suppose F is the
output of the Symbolic Preprocessing of Ld with respect to G′. By construction,
Ld is a subset of F and, therefore due to Theorem 4.14, these elements are a linear
combination of the triangular basis F̃+ ∪H for a suitable subset H ⊂ F . Elements
of H are either elements of Ld or of the form xαg, for g ∈ G′ and α ∈ Zn

≥, and f
can thus be written as

f =
∑

i

aifi +
∑

j

ajx
αjgj ,

for fi ∈ F̃+ and gj ∈ G′, ai, aj ∈ k and αj ∈ Zn
≥0. Thus the Division Algorithm

gives a remainder equal to 0 for a suitable tuple of elements in F̃+∪G′, hence there
exists a reduction chain to 0. �

Now we are ready to describe F4 and prove its correctness. The selection
strategy in Step 5 of the algorithm is kept blank. One can choose to select all
critical pairs available at that time, or for example the normal selection strategy
from Section 4.2.

Theorem 4.21 (F4). The algorithm F4 computes a Gröbner Basis G of an
ideal spanned by F , such that F ⊆ G, in a finite number of steps.

• Input: F = {f1, . . . , fm} ⊂ P
• Output: A Gröbner Basis G for 〈F 〉, satisfying F ⊆ G.

(1) G′ := F, F̃0

+
:= F, d := 0

(2) B := {(b1, b2) : b1, b2 ∈ G′ with b1 6= b2}
(3) WHILE B 6= ∅ DO
(4) d := d+ 1
(5) Bd := Select(B)
(6) B := B \Bd

(7) Ld =
⋃

(b1,b2)∈Bd

{
LCM(b1,b2)

LT (b1)
b1,

LCM(b1,b2)
LT (b2)

b2

}
(8) F̃+

d := ReductionF4(Ld, G
′)

(9) FOR f ∈ F̃+
d

(10) B := B ∪ {(f, g) : g ∈ G′}
(11) G′ := G′ ∪ {f}
(12) G := G′

Proof. Correctness and termination are proven by the following observations.
(1) Lemma 4.19 implies that during stage d = d′ of the algorithm, the inter-

mediate basis satisfies,

G′ = ∪d′

d=1F̃
+
d ⊂ 〈F 〉;

4.3. REDUCTION BY LINEAR ALGEBRA, F4 61

(2) Lemma 4.18 shows that

〈LT (F̃+
1)〉 ⊂ 〈LT (F̃+

1 ∪ F̃+
2)〉 ⊂ . . . ,

is an ascending chain of monomial ideals. The Ascending Chain Condition,
Theorem 2.32, states that it should stabilize eventually. This implies that
the while-loop should terminate since we run out of critical pairs at some
point;

(3) Suppose the algorithm terminates at d = dF4. Since every pair (g1, g2)
for g1, g2 ∈ G = ∪dF4

d=1F̃
+
d is considered, S(g1, g2) is in the linear span

of elements of G. Lemma 4.20 states that its Normal Form equals zero.
Hence, the Gröbner Basis criterion of Theorem 2.46 is satisfied.

�

Faugère suggests to implement F4 with a strong criterion to reject useless crit-
ical pairs, for example the one by Gebauer and Möller [GM88]. This criterion can
be applied to any extension of the Buchberger Algorithm, which iteratively selects
critical pairs and computes the corresponding reduced S-polynomials. It is also
recommended to store the matrices in compressed form and use specially tailored
techniques for row reduction of sparse matrices. The so-called Gebauer and Möller
Installation will be explained in more detail in Section 4.4.

Furthermore, in [Fau99] an improvement of the Symbolic Preprocessing rou-
tine is described, based on the theory in [FGLM93]. Our implementation of F4 is
based on the Homogeneous Buchberger Algorithm and includes the normal selection
strategy, the Gebauer and Möller Installation and improved Symbolic Preprocess-
ing.

Our implementation of F4 is particularly useful since it provides the user with
a tool to determine various properties of the Gröbner Basis computation. These
include the number of critical pairs considered, their largest degree, the number of
rows of the largest reduction matrix and its density.

Remark 4.22. One might also consider a parallel implementation of the F4
algorithm. Attardi and Traverso describe parallelizations of the Buchberger Algo-
rithm in [AT96]. These algorithms distribute the critical pairs to other processes
that compute and reduce the S-polynomials. Similarly, one could distribute sets
of critical pairs. During the normal selection strategy for example, the sets Bd

or Ld from equation (4.3) could be handled by different processes for different d.
Magma 2.11 allows the creation of TCP sockets on UNIX systems to establish
communication channels between several instances of Magma on a network

During the execution of F4, no real S-polynomials S(gi, gj) are created but
their components,

xγij

LT (gi)
gi and

xγij

LT (gj)
gj with xγij = LCM(LT (gi), LT (gj)),

are stored in the reduction matrix. The largest of the total degrees of these terms
corresponds to the total degree of a fictitious S-polynomial. This does not neces-
sarily have to correspond with the largest degree of a critical pair during the course
of the algorithm, since an S-polynomial might reduce to zero while its components
contribute to the reduction step. Conversely, the total degree of an intermediate
polynomial during the lexicographic Gröbner Basis computation might exceed the

62 4. ADVANCED GRÖBNER BASES TECHNIQUES

largest degree of a critical pair, because in this case an S-polynomial might reduce to
an element in the ideal of larger total degree. As is shown in Chapter 5, the largest
total degree of an intermediate polynomial is an upper bound for the smallest D
for which the XL algorithm is able to find a Gröbner Basis.

Definition 4.23. The largest total degree of an intermediate polynomial dur-
ing the execution of F4 is called dF4.

Figure 4.1. Average number of critical pairs considered (black)
and rows in the reduction matrix (grey) for HFE plaintext attacks
with F4.

For F4-runs on different HFE equations having grevlex order, the average
number of rows in the largest reduction matrix and critical pairs considered are
depicted in Figure 4.1. The key lengths varied from 3 to 12 bits. The average was
taken over 100 samples for every key length. We also computed the exponential
least-square fits for the number of rows and pairs, being respectively

3.44 ∗ 1.63n and 2.01 ∗ 1.64n.

Notice how the base numbers are very close to each other. Intuitively one would
expect this, since the largest reduction matrix considers a major part of the critical
pairs.

The next section introduces the well-known and commonly adopted Gebauer
and Möller Installation and the criterion of the algorithm F5 for discarding useless
critical pairs. The latter is claimed to be optimal [Fau02], but does not seem to
be widespread among the implementers of Gröbner Basis algorithms.

4.4. Gebauer and Möller Installation and F5

The Gebauer and Möller Installation is introduced in [GM88] and is an im-
provement of the two criteria proposed by Buchberger in [Buc85]. Recently,
Caboara, Kreuzer and Robbiano [CKR04] showed how to compute a minimal
set of critical pairs and concluded that the Gebauer and Möller criteria were al-
most optimal. This section introduces the Gebauer and Möller Installation and the
criterion for avoiding useless critical pairs of F5.

4.4. GEBAUER AND MÖLLER INSTALLATION AND F5 63

The starting point of the Gebauer and Möller Installation is the observation
that Gröbner Bases can be characterized using a basis of its module of syzygies. To
define syzygies, we need the notion of modules. Modules are to rings what vector
spaces are to fields: elements of a given module over a ring can be added to one
another and multiplied by elements of the ring.

Definition 4.24. For a ring R, an R-moduleM is a commutative group (M,+)
with an operation · : R×M →M called scalar multiplication such that 1 ·m = m
for all m ∈ M and such that the associative and distributive laws are satisfied. A
commutative subgroup N ⊆M is called an R-submodule if we have R ·N ⊆ N .

In Section 2.2 we briefly touched upon the subject of syzygies and their relation
to S-polynomials. This correspondence is further explained here.

Definition 4.25. Let F = (f1, . . . , fm) ∈ Pm. A syzygy on the leading terms
LT (f1), . . . , LT (fm) is an m-tuple of polynomials S = (h1, . . . , hm) ∈ Pm such that

m∑
i=1

hiLT (fi) = 0.

We let S(F) be the subset of Pm consisting of all syzygies on the leading terms of
F .

Let the canonical basis vector ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Pm, where the 1 is
in the i-th place. Then a syzygy S ∈ S(F) can be written as S =

∑m
i=1 hiei with

hi ∈ P . Using this notation, a syzygy coming from S-polynomials is denoted as
follows.

Definition 4.26. Let F be the tuple (f1, . . . , fm) ∈ Pm. The syzygy Sij

corresponding to the S-polynomial S(fi, fj) is defined as,

(4.4) Sij =
xγ

LT (fi)
ei −

xγ

LT (fj)
ej ,

where xγ refers to the usual LCM(LM(fi), LM(fj)). These syzygies are referred
to as critical syzygies, see for example [CKR04].

A nice fact about S(F) is that it has a finite basis. There is a finite collection of
syzygies such that every other syzygy is a linear combination with polynomial coef-
ficients of the basis of syzygies. To show this, we define the notion of a homogeneous
syzygy .

Definition 4.27. An element S ∈ S(F) is homogeneous of multidegree α,
where α ∈ Z≥0, provided that

S = (c1xα(1), . . . , cmx
α(m)),

where ci is an element of the field k and α(i) +multideg(fi) = α whenever ci 6= 0.

The syzygies of Definition 4.26 are homogeneous of multidegree γ according to
the previous definition. The following proposition states that these Sij form a basis
of all syzygies on the leading terms S(F) ⊂ Pm.

Proposition 4.28. Given F = (f1, . . . , fm), every syzygy S ∈ S(F) can be
written as

S =
∑
i<j

uijSij ,

64 4. ADVANCED GRÖBNER BASES TECHNIQUES

with uij ∈ P . Hence,
{Sij : 1 ≤ i < j ≤ m} ,

with Sij homogeneous of multidegree γ, is a homogeneous basis of S(F).

Proof. See [CLO96, p. 104]. �

Let us illustrate this proposition with an example.

Example 4.29 (Basis of the module of syzygies in Magma). The basis of the
module of syzygies of the set F =

{
x2

1 + x2
2, x

2
2 + 1, x2

1 + x1, x
2
2 + x2

}
⊂ P consists

of module elements Sij as in Definition 4.26.
> // Create the polynomial ring P and set F

> P<[x]> := PolynomialRing(GF(2), 2, "lex");

> F := [x[1]^2 + x[2]^2, x[2]^2 + 1, x[1]^2 + x[1], x[2]^2 + x[2]];

> LTF := [LeadingTerm(f) : f in F];

> SyzygyModule(LTF);

Module of degree 4

TOP Order

Coefficient ring:

Polynomial ring of rank 2 over GF(2)

Lexicographical Order

Variables: x[1], x[2]

Basis:

(1 0 1 0)

(0 1 0 1)

(0 0 x[2]^2 x[1]^2)

> // Add to F the reduced S-polynomials corresponding to the above basis elements

> Include(~F, NormalForm(F[1]+ F[3], F));

> Include(~F, NormalForm(F[2]+ F[4], F));

> Include(~F, NormalForm(x[2]^2*F[3]+ x[1]^2*F[4], F));

> F;

[

x[1]^2 + x[2]^2,

x[2]^2 + 1,

x[1]^2 + x[1],

x[2]^2 + x[2],

x[1] + 1,

x[2] + 1,

0

]

> // Check if the new F is a Groebner Basis, otherwise repeat the above steps

> IsGroebner(F);

true

The basis in Proposition 4.28 is called the Taylor basis. Methods to obtain a
reduced basis from the Taylor basis give an advanced Gröbner Basis test, since less
S-polynomials have to be considered. This follows from the next theorem, which is
a new algorithmic criterion for Gröbner Bases.

Theorem 4.30. Let G = (g1, . . . , gm) ∈ Pm. A basis {g1, . . . , gm} for an
ideal I is a Gröbner Basis if and only if for every element S = (h1, . . . , hm) in a
homogeneous basis for the syzygies S(G), we have

S ·G =
m∑

i=1

higi →G 0.

Proof. See [CLO96, p. 105]. �

4.4. GEBAUER AND MÖLLER INSTALLATION AND F5 65

The syzygies Sij correspond exactly to the S-polynomials S(fi, fj) that one
might consider during the course of the Buchberger Algorithm, or similar algorithms
to compute Gröbner Bases. To exploit Theorem 4.30, one needs to know how to
make smaller homogeneous bases of S(G). We will show that, starting with the
Taylor basis, there is a systematic way to predict when elements can be omitted.
The following proposition is due to Buchberger [Buc85]. The proof from [GM88]
is included since it illustrates an important idea on how to discard critical pairs.
This is done by looking at the module of syzygies of the original module of syzygies
on the leading terms.

Proposition 4.31. Given G = (g1, . . . , gm) ∈ Pm, suppose that we have a
subset L ⊂ {Sij : 1 ≤ i < j ≤ m} that is a basis of S(G). In addition, suppose we
have distinct elements gi, gj and gk ∈ G such that

LT (gk)|LCM(LT (gi), LT (gj)).

If Sij, Sjk ∈ L, then L \ {Sij} is also a basis of S(G). (Note: If i > j, we set
Sij = Sji.)

Proof. Without loss of generality, assume that i < j < k. Set

xγij = LCM(LM(gi), LM(gj))

and let xγik and xγjk be defined similarly. Furthermore, set

xγijk = LCM(LM(gi), LM(gj), LM(gk)).

Our hypothesis implies that xγik and xγjk both divide xγij . We shall prove that

Sij =
xγij

xγik
Sik −

xγij

xγjk
Sjk.

There are m(m − 1)/2 syzygies Sij . If there is some dependency in these
generators of S(G), then higher order syzygies in the module Pm(m−1)/2 exist that
cancel them. To create a canonical basis for this module of syzygies, the m(m−1)/2
syzygies are ordered by <1, which is defined as follows,

Sab <1 Scd ⇔ xγab < xγcd or (xγab = xγcd , b ≤ d, where b = d⇒ a < c).

Using this order, we no longer denote the canonical i-th unit vector in Pm(m−1)/2

by ei but by eab if Sab is the i-th syzygy in this order.
The module of syzygies

S(2)(G) =

m∑

i,j=1,i<j

hijeij ∈ Pm(m−1)/2 :
m∑

i,j=1,i<j

hijSij = 0

has the Taylor basis L(2) = {Sijk : 1 ≤ i < j < k ≤ m} with

Sijk =
xγijk

xγij
eij −

xγijk

xγik
eik +

xγijk

xγjk
ejk.

The elements Sijk are homogeneous of multidegree γijk according to Definition
4.27.

Our hypothesis implies that Sijk and Sij are homogeneous of the same multide-
gree γij = γijk. In that case, Sij can be expressed in terms of the syzygies Sik and
Sjk, because Sijk is an element of the second module of syzygies S(2)(G). Hence,

Sij =
xγijk

xγik
Sik +

xγijk

xγjk
Sjk.

66 4. ADVANCED GRÖBNER BASES TECHNIQUES

This allows us to remove Sij from L and the set L \ {Sij} still generates S(G)
because in every basis representation of an S ∈ S(G), Sij can be replaced by Sik

and Sjk. �

The Gebauer and Möller Installation is best described as a modification of the
Buchberger Algorithm. This is presented below. An advantage of this installation
is that any Gröbner Basis algorithm that selects critical pairs in a similar way as
the Buchberger Algorithm, can adopt this selection criterion. The reader is referred
to [GM88] for the details.

Theorem 4.32 (Gebauer and Möller Installation). Let I = 〈f1, . . . , fm〉 6= {0}
be a polynomial ideal. Then a Gröbner Basis for I can be constructed in a finite
number of steps by the following algorithm.

• Input: F = {f1, . . . , fm}
• Output: A Gröbner Basis G for 〈{f1, . . . , fm}〉.

(1) G := {f1}
(2) D := {}
(3) FOR t := 2 to m
(4) UpdatePairs(D, t)
(5) G := G ∪ {ft}
(6) r := m
(7) WHILE there exists (i, j) ∈ D REPEAT

(8) h := S(fi, fj)
G

(9) IF h 6= 0 THEN
(10) fr+1 := h
(11) D := UpdatePairs(D, r + 1)
(12) G := G ∪ {fr+1}
(13) r := r + 1
(14) D := D \ {(i, j)}
(15) RETURN G

The procedure UpdatePairs is defined as follows.
• Input: A set of pairs D and a positive integer t
• Output: An updated set of critical pairs D, such that {Sij : (i, j) ∈ D}

together with some Sij with 1 ≤ i < j ≤ t and LT (fi)LT (fj) = xγij , form
a basis of the module of syzygies{

(g1, . . . , gt) ∈ P t :
t∑

i=1

giLT (fi) = 0

}
.

(1) Cancel in D all pairs (i, j) which satisfy

xγij = xγijt and xγit 6= xγij 6= xγjt ;

(2) Denote this set of remaining pairs by D’;
(3) Set D1 := {(i, t) : 1 ≤ i < t};
(4) Cancel in D1 each pair (i, t) for which a (j, t) ∈ D1 exists, such that

xγjt |xγit and xγjt 6= xγit ;

(5) In each non-void subset {(j, t) : xγjt = τ} ⊂ D1′ with monomial τ ∈ T (P),
fix an element (i, t) satisfying

LT (fi)LT (fj) = xγit

4.4. GEBAUER AND MÖLLER INSTALLATION AND F5 67

or if no such (i, t) exists, fix an arbitrary (i, t). Cancel the other elements
of {(j, t) : xγjt = τ} in D1′. Finally delete in D1′ all (i, t) with

LT (fi)LT (ft) = xγit

and denote again by D1′ this finally obtained subset of D1′;
(6) RETURN D := D1′ ∪D′

Proof. See [GM88, p. 283]. �

Suppose we want to compute a Gröbner Basis of the set {f1, . . . , fm}. Similar
to the Buchberger Algorithm, if we have a critical pair that does not reduce to zero,
the reduced S-polynomial is called fm+1 and is appended to our original set. This
process is repeated and S-polynomials are indexed by the order in which they are
added to the original basis. Now, instead of trying all combinations of pairs (i, j)
for 1 ≤ i < j, the Gebauer and Möller Installation runs through a selection of all
possible combinations. This is illustrated in the following example.

Example 4.33. The implementation of the Homogeneous Buchberger Algorithm
with the Gebauer and Möller Installation is able to return the list of selected critical
pairs.
> load "HomBuchGM.m";

> P<x,y,z> := PolynomialRing(GF(23), 3, "lex");

> F := [

> 6*x^2+12*x*y+4*y^2+14*x*z+9*y*z+7*z^2,

> 3*x^2+7*x*y+22*x*z+11*y*z+22*z^2+8*y^2,

> x^2+18*x*y+19*y^2+8*x*z+5*y*z+7*z^2];

> G, pairs := HomBuchGM(F);

> pairs;

[

[1, 3], [1, 4], [1, 5], [4, 5], [1, 2], [5, 7],

[7, 8], [4, 6], [4, 8], [8, 9], [5, 9], [6, 7]

]

In the case of a homogeneous set of generators of an ideal, Caboara, Kreuzer
and Robbiano [CKR04] succeeded in describing an efficient way to compute a
minimal set of generators of the module generated by the syzygies corresponding
to the critical pairs. They noticed that the reduced basis of the module of syzygies
of the leading terms was actually a reduced Gröbner Basis. From this basis, they
computed a minimal set of generators.

Table 4.1 illustrates the performance of the Gebauer and Möller Installation
for well-known examples, some of which were made homogeneous first. This table
is taken from [CKR04, p.24] and compares the number of redundant critical pairs
considered by the Gebauer and Möller Installation to the minimal set of generators
of S(G) called L∗, where G denotes the reduced Gröbner Basis. The binomium(
#G
2

)
equals the total number of critical pairs. For benchmark Kin1 the Gebauer

and Möller Installation considers the most redundant critical pairs, but this number
is still relatively small compared to #L∗.

We continue this section with the explanation of the F5 selection criterion. The
author claims that if the input is a regular sequence, the algorithm generates no
useless critical pairs.

Definition 4.34 ([KR00], page 171). Let P be a polynomial ring and I =
〈f1, . . . , fm〉 an ideal in P .

68 4. ADVANCED GRÖBNER BASES TECHNIQUES

Table 4.1. Number of redundant pairs considered by the Gebauer
and Möller Installation, GMI, compared to the minimal system of
generators of the syzygies of the leading terms, L∗, for well-known
benchmarks (see [CKR04]).

benchmark #G
(#G

2

)
GMI #L∗

Alex3 211 22, 155 3 627
Cyclic7 443 97, 903 0 681

Kin1 306 46, 665 102 3, 329

Mora9 4, 131 8, 530, 515 7 44, 458
Wang 317 50, 086 8 1, 389

• An ideal I is called proper if it is unequal to P .
• An element f ∈ P is called a non-zerodivisor if fg = 0 implies g = 0.
• A sequence of elements f1, . . . , fm ∈ R is called a regular sequence if the

ideal I is proper and the image of fi is a non-zerodivisor in P/〈f1, . . . , fi−1〉
for i = 1, . . . ,m.

Let us illustrate the definition of a regular sequence with an example.

Example 4.35. Let P be the polynomial ring GF (2)[x1, . . . , x4] and define
f1 = x2x4 − x2

3, f2 = x1x4 − x2x3 and f3 = x1x3 − x2
2.

The ideal is proper. Any two fi, fj, i, j ∈ {1, 2, 3} and i 6= j, are coprime, so
fig = 0 in P/〈fj〉 for g ∈ P implies g = 0. Therefore, any two polynomials fi, fj

form a regular sequence in P . However, x3 ∗ f3 = 0 and x4 ∗ f3 = 0 in P/〈f1, f2〉
with x3 and x4 not in the ideal 〈f1, f2〉, hence f1, f2, f3 is not a regular sequence
in P .

To explain the F5 criterion we need to extend the original ordering < to a new
ordering <P m for module Pm over polynomial ring P . As before, ei refers to the
canonical i-th unit vector (0, . . . , 0, 1, 0, . . . , 0) in Pm.

Definition 4.36. For two module elementsH =
∑m

i=j hiei andH ′ =
∑m

i=j′ h
′
iei

in Pm, with non-zero hj , h′j′ in P , the module term ordering is defined as follows,

H <P m H ′ ⇔ j > j′ or (j = j′ and LT (hj) < LT (h′j′)).

The description of the F5 criterion comes with many new definitions. Therefore,
the final part of this chapter should not be considered as a common way to refer to
certain objects.

With an ordering on the module elements, one can speak of a leading module
term.

Definition 4.37. The leading module term of an element H =
∑m

i=j hiei, with
non-zero hj ∈ P , is defined as

LMT (H) = LT (hj)ej .

The notion of a signature of a polynomial is essential and specific to the algo-
rithm F5. Furthermore, Faugère introduces the index of a polynomial. Both are
introduced in the following definition.

Definition 4.38. During the computation of a Gröbner Basis of a tuple F =
(f1, . . . , fm) by means of the algorithm F5, the signature of a polynomial f , S(f),

4.4. GEBAUER AND MÖLLER INSTALLATION AND F5 69

equals the leading module term of the smallest module element H =
∑m

i=1 hiei

that satisfies

(4.5) LT (H · F) = LT (
m∑

i=1

hifi) = LT (f).

Hence, S(f) has the form tej , for term t ∈ P and integer j ∈ {1, . . . ,m}.
The index of the polynomial f is the index of the canonical unit vector in the

signature, thus if S(f) = tej , then index(f) = j.

The F5 criterion is reformulated in the following theorem. The third criterion
in this theorem is a relaxation of Theorem 2.41. To allow this relaxation the second
criterion is added. If this second criterion holds for an element g in the Gröbner
Basis G, then g is called admissible in [Fau02].

Theorem 4.39. Let F = {f1, . . . , fm} and G = {g1, . . . , gmG
} ⊂ P span the

ideal I. Define xγij = LCM(LM(gi), LM(gj)), for i, j in {1, . . . ,mG}.
The set G is a Gröbner Basis if the following criteria hold:
(1) F ⊂ G;
(2) For every g ∈ G, there exists a module element H =

∑m
i=1 hiei ∈ Pm with

H · F =
m∑

i=1

hifi = g,

such that LMT (H) equals S(g);
(3) The S-polynomial S(gi, gj) is 0 or has a t-representation

∑m
l=1 blfl, with

(a) t < xγij ,

(b) S(t) ≤P m S(xγij

LT (gi)
gi) and S(t) ≤P m S(xγij

LT (gj)
gj),

(c) S(blfl) ≤P m S(S(gi, gj)), for 1 ≤ l ≤ m,
for all pairs (i, j) satisfying:
(a) S(gj) <P m S(gi),
(b) if S(xγij

LT (gi)
gi) = tiei′ and S(xγij

LT (gj)
gj) = tjej′ , then ti and tj are not

divisible by elements of respectively

{LT (f) : f ∈ 〈fi′+1, . . . , fm〉} and {LT (f) : f ∈ 〈fj′+1, . . . , fm〉} .

Proof. The proof of the original criterion is included in [Fau02, p.78]. In
spite of some mistakes, Faugère’s colleague Ars assured us that the results are
valid. However, we did not manage to verify them. �

The algorithm F5 takes a tuple F = (f1, . . . , fm) of polynomials as input and
incrementally computes an intermediate Gröbner Basis Gi for every set {fi, . . . , fm}
for i = m down to i = 1. During the i-th round of the algorithm, the basis Gi+1

and the polynomial fi are taken as input and a Gröbner Basis Gi is calculated.
While computing the i-th intermediate basis Gi, the algorithm selects critical

pairs in increasing degree. A pair (i, j) is rejected if one of the terms ti or tj
occurring in the corresponding signatures (see Theorem 4.39, third criterion) is
reducible with respect to Gi+1. Furthermore, the algorithm preserves the property
that the new-found basis elements are admissible and keeps track of their signature.

Remark 4.40. We have implemented an improvement of the Buchberger Algo-
rithm including the selection criterion of F5 in the way it was described in [Fau02].
Although our implementation returns a correct Gröbner Basis for all binary HFE

70 4. ADVANCED GRÖBNER BASES TECHNIQUES

Figure 4.2. Comparison of the average number of critical pairs
during the run of a Gröbner Basis algorithm applied to lex HFE
equations (50 samples).

examples and almost all random systems over GF (2), it is less reliable for sys-
tems over larger fields. Figure 4.2 compares the number of critical pairs considered
during our implementations of F4, with the Gebauer and Möller Installation, and
F5.

This chapter covered important variations on the original Buchberger Algo-
rithm. Among these techniques, the Gebauer and Möller Installation and the
reduction by means of linear algebra seem highly effective and most commonly
adopted. Moreover, the theory regarding F4 turns out to be useful since it re-
lates Gröbner Basis algorithms to XL. This relation will be the main topic of the
following chapter.

CHAPTER 5

Analysis of XL and F4

In the final part of this thesis, we relate XL to Gröbner Basis algorithms and
show that XL is a cumbersome way of solving a system of equations. This is mainly
due to the observation that the matrices occurring in the XL computation are much
larger than similar matrices in the F4 algorithm. This chapter also discusses a
proposed theoretical lower bound for the minimal degree at which XL returns a
solution.

Recently, two articles have appeared discussing the comparison of XL to Gröbner
Basis algorithms. The first, [SKI04] by Sugita, Kawazoe and Imai, describes the
incremental version of XL as an algorithm similar to F4 and proves that it com-
putes a Gröbner Basis for degree dF4. This topic shall be treated in more detail in
Section 5.1.

The second article [FA04], relating XL to Gröbner Basis algorithms, is written
by Faugère and Ars. The main claim of this paper is the following. Let F ⊂ P be a
set of polynomials. If the homogenized elements of F form a regular sequence and
XL finds a Gröbner Basis for a certain degree, D, then F5 computes a Gröbner
Basis for the grevlex ordering, without exceeding degree D during intermediate
computations. Since their description of F5 is not completely unambiguous, we
were not able to verify this result. However, their claims are discussed briefly in
Section 5.3.

In [Moh01] Moh introduced a way of analyzing the complexity of XL. Based
on the properties of regular series, he estimated the degree at which the number of
independent polynomials generated by XL was close enough to the number of vari-
ables to find a partial solution. Diem [Die04] continued Moh’s work and provided
more theoretical background on the subject. Diem’s intentions are to make this
public in a short while. Section 5.2 summarizes his ideas and proposes a comment
regarding the applicability.

5.1. Similarities between XL and F4

In [SKI04] F4 is shown to be very similar to the incremental version of XL.
From the description of this version of XL, we shall see that the polynomials that
occur during an F4 computation are a subset of those created by XL. The correct-
ness and termination follow for that reason. It might happen that this XL version
finds a Gröbner Basis for smaller D than the dF4 of F4, since the number of gen-
erated polynomials is larger. Consequently, this might lead to more reductions of
leading terms. However, simulations show that in either case the matrices of F4
are smaller, which is logical due to the efficient selection criterion in place.

By three modest alterations in the description of the F4 algorithm (Theorem
4.21), we obtain an algorithm that corresponds to the incremental version of XL
described in Remark 3.14. Firstly, let the selection function in Step 5 be the identity,

71

72 5. ANALYSIS OF XL AND F4

i.e. for a set B of possible critical pairs, Select(B) = B. Secondly, modify Step 7
such that not only the two terms

LCM(LT (b1), LT (b2))
LT (b1)

b1 and
LCM(LT (b1), LT (b2))

LT (b2)
b2

of the S-polynomial corresponding to the critical pair (b1, b2) in B are included, but
all multiplications of b1 and b2, up to total degree d, of the form

xαbi, for i = 1, 2 and α ∈ Zn
≥0,

as created in Step 1 of the original XL algorithm from Definition 3.12. Therefore,
Step 7 becomes

(5.1) XLd =
⋃

(b1,b2)∈Bd,i=1,2

{
xαbi : α ∈ Zn

≥0, totaldeg(x
αbi) ≤ d

}
.

The third modification is that we can omit the Symbolic Preprocessing subroutine
from Definition 4.16. This is because all the polynomials that are appended to the
reduction matrix in F4, are included in expression (5.1) and therefore automatically
used for reduction.

Showing the correctness and termination is analogous to the proof of Theorem
4.21. Lemma 4.18 is applicable in this case since the modified set XLd includes the
polynomials in its F4 equivalent Ld from expression (4.3). Hence the intermediate
bases during the incremental application of XL correspond to an ascending chain
of ideals. This implies termination. Correctness follows from the fact that all
generated elements are members of the ideal spanned by F . These observations
lead to the following proposition.

Proposition 5.1. The incremental version of XL returns a Gröbner Basis for
a degree smaller than or equal to the largest degree of an intermediate polynomial
during the algorithm F4, dF4.

Proof. During the course of F4, the largest degree of a polynomial that con-
tributes to an intermediate basis or to the reduction of other polynomials equals
dF4. XL does not need polynomials of larger degree during the reduction, since the
polynomials in Ld generated by F4 are included in the set XLd and are sufficient to
form a Gröbner Basis. Note that the incremental version of XL should be applied
such that it agrees with the selection strategy of the F4 algorithm. �

The above description is illustrated by an example in Magma. We show that
XL is able to find a partial solution for a degree smaller than the one at which the
algorithm finds the Gröbner Basis. The set F is included in Appendix B.

Example 5.2.
> // Encrypt a plaintext and generate the HFE equations

> y, F := HFEencrypt([1,1,1,1,1,1,1]);

> // Solve the system by XL for degree 3 and catch the polynomials F2

> // corresponding to the reduced matrix generated in Step 2

> s, F2 := XL(F, 3);

*********** XL **************

Time of EchelonForm(Fmatrix) (s) : 0

*** Summary ***

Memory size of process (kb) : 200

Size of XL matrix : 112 rows and 120 columns

Size of row reduced XL matrix : 109 rows and 120 columns

5.1. SIMILARITIES BETWEEN XL AND F4 73

Number of univariate polynomials : 17

Number of single root polynomials : 15

Number of univariate monomials : 22

Number of variables solved : 5

Is the system a Groebner Basis : false

Substitution sequence [[var,root]] :

[[7, 1], [3, 1], [6, 1], [2, 1], [1, 1]]

> // Now apply XL to the polynomials generated by XL for degree 3

> s, F3 := XL(F2, 4);

*********** XL **************

Time of EchelonForm(Fmatrix) (s) : 0.02

*** Summary ***

Memory size of process (kb) : 9772

Size of XL matrix : 2272 rows and 330 columns

Size of row reduced XL matrix : 329 rows and 330 columns

Number of univariate polynomials : 28

Number of single root polynomials : 28

Number of univariate monomials : 29

Number of variables solved : 7

Is the system a Groebner Basis : true

Substitution sequence [[var,root]] :

[[4, 1], [7, 1], [3, 1], [6, 1],

[2, 1], [5, 1], [1, 1]]

If one compares the performance of F4 and XL, there are two parameters one
should take into account. The complexity of XL mainly depends on the smallest
degree for which it returns a Gröbner Basis or a (partial) solution. Whether one
chooses to look for one or the other, depends on the goals of the cryptanalyst. For
example, when attacking HFE it is very common that the cryptanalyst encounters
more plaintexts corresponding to the ciphertext. In the worst case it might even
happen that there is no unique solution to any of the variables. This means that
XL does not find a solution. Hence, searching for a Gröbner Basis returns more
information, but usually needs a slightly higher degree.

Figure 5.1. Comparison of the average degree to find a Gröbner
Basis or a partial solution.

74 5. ANALYSIS OF XL AND F4

Figure 5.1 depicts the average degree to find a Gröbner Basis for a system
of equations in lex order corresponding to a HFE plaintext. Fifty samples were
taken per key length. The plotted dmin is the smallest degree for which XL finds
a partial solution. Similarly, dXL corresponds to the smallest D to find a Gröbner
Basis with XL. Simulations with HFE for key sizes beyond 10 bits did not return
a dXL greater than 4, when the degree of the secret HFE polynomial was chosen
smaller than 64. These simulations are very time and memory consuming and
therefore small in number. Nevertheless, up to 17 bits we did not find instances of
HFE with dXL > 4.

XL applied incrementally could be regarded as an elaborate variation on the
Buchberger Algorithm. It selects all critical pairs at once, multiplies with all pos-
sible monomials and reduces the new-found elements in the ideal with respect to
an intermediate basis that consists of all elements in the ideal considered by the
algorithm. The similarity is most striking when we compare XL to the algorithm
F4. The extensiveness of XL implies many useless computations but seems opti-
mal when one considers the largest degree of intermediate polynomials during the
algorithm.

As mentioned above, XL is a cumbersome way to compute a Gröbner Basis.
This is mainly due to the fact that there is no selection criterion in place. In that
sense, algorithm XSL, briefly introduced in Section 3.4, is an improvement on the
original XL, since it does not multiply the original polynomials with all possible
monomials up to a certain degree. However, continuing on the discussed relation
between F4 and XL, one could also easily embed a selection criterion in XL similarly
to F4. Since the Gebauer and Möller Installation is much better understood than
XSL, one could experiment with this criterion in combination with XL.

To illustrate the fact that XL is more time consuming than F4, the sizes of the
matrices for both algorithms applied to HFE are depicted in Figure 5.2. The largest
matrix that occurs during F4 is compared to the size of the matrices occurring in
XL. Applying Gaussian reduction to these matrices forms the most time consuming
part of both algorithms. The complexity equals O((#rows)ω) operations in GF (2),
where ω = 2.376 is the best possible Gaussian exponent explained in Proposition
3.16.

5.2. Approximated lowest degree for XL

Approximating the complexity of Gröbner Basis algorithms is a difficult but
important problem in computer algebra. The complexity is often expressed in terms
of the largest degree of a polynomial during the computation. In this chapter we
discuss the derivation of a lower bound for the lowest degree, dmin, for which XL
finds a partial solution to a system of algebraic equations.

The method of estimating dmin was introduced by Moh in [Moh01]. Under
the assumption that a set of polynomials F is a regular sequence, he derived an
expression for the number of linearly independent polynomials generated by XL.
In [FA04], Faugère and Ars used the Hilbert series of regular sequences to derive
a lower bound for dF5. Later, Diem [Die04] derived a lower bound for dmin based
on the same Hilbert series and provided more background to the analysis.

Let P = k[x1, . . . , xn] be a polynomial ring, F = {f1, . . . , fm} a subset of P
and U≤D the k-vector space generated by the XL polynomials{

xαfi : α ∈ Zn
≥0, 1 ≤ i ≤ m and totaldeg(xαfi) ≤ D

}
.

5.2. APPROXIMATED LOWEST DEGREE FOR XL 75

Figure 5.2. Comparison of the number of rows during the algo-
rithms F4 and XL applied to HFE. X̃L refers to the XL matrix
after reduction.

Let P≤D denote the elements in the polynomial ring P up to degree D. The vector
space dimension of P≤D and U≤D are denoted by respectively dimk(P≤D) and
dimk(U≤D).

In [Die04, p.03] a function χ(D) is introduced, satisfying

χ(D) = dimk(P≤D)− dimk(U≤D).

Suppose the columns in the XL matrix are ordered in such a way that variable xn

is eliminated last. If the number of linearly independent polynomials, dimk(U≤D),
in the set UD approaches the number of columns, or equivalently the number of
distinct monomials in the system, it becomes more and more likely that one finds
a univariate monomial.

Let us be more precise. If the monomials xi
n, for i = 0, 1, . . . , D, exist in the

support and the relation

|T (U≤D)| − dimk(U≤D) ≤ D + 1

holds, then it is certain that XL finds a univariate expression in the variable xn

that helps in solving the variable xn. However, we are looking for the degree D
that satisfies a slightly different relation, namely

(5.2) χ(D) ≤ D + 1,

or χ(D) ≤ D if we are sure that the support does not include constant terms. This
is due to the following observation. For general systems of polynomial equations
we do not know the size of the support, therefore we search for the difference
between |T (P≤D)| and dimk(U≤D), being χ(D). For equations coming from HFE
and random quadratic systems of equations, the sizes of |T (P≤D)| and |T (U≤D)|
are equal in most cases.

However, there are three important remarks concerning this simplification:
(1) For sparser systems of equations, the difference between the vector space

dimension dimk(P≤D) and |T (U≤D)| becomes larger. This might lead to
distorted results that indicate that expression (5.2) is satisfied, while it is
not.

76 5. ANALYSIS OF XL AND F4

(2) If the xn coordinates of the different points in V(I) are distinct, the
univariate polynomial in xn can not give a decisive answer.

(3) If the field equations are included, it might happen that x2
n−xn is returned

instead of a polynomial that corresponds to a unique solution for xn.

For the purpose of an approximation of the degree for which XL returns a partial
solution, the simplification χ(D) ≤ D+1 suffices for many instances. However, the
condition is not necessary as we can see in Example 5.2.

Lower bounds for χ(D) are derived via homogeneous ideals, therefore the notion
of homogenized polynomials is introduced.

Definition 5.3. Let g(x1, . . . , xn) ∈ k[x1, . . . , xn] be a polynomial of total de-
gree d and

∑d
i=0 gi be the expansion of g as the sum of its homogeneous components,

where gi has total degree i. The homogenization of g is defined as

gh(x0, x1, . . . , xn) =
d∑

i=0

gi(x1, . . . , xn)xd−i
0

= gd(x1, . . . , xn) + gd−1(x1, . . . , xn)x0 + . . .+ g0(x1, . . . , xn)xd
0.

Remark 5.4. In the context of homogeneous ideals, the notation gh refers to
a homogenization of the polynomial g and not to a power of g.

The polynomial gh is a homogeneous polynomial of total degree d in the poly-
nomial ring k[x0, x1, . . . , xn] including the extra variable x0. Dehomogenizing gh

is done by evaluating gh at x0 = 1. Homogenization is an isomorphism [CLO96,
p.454] and under this isomorphism, the k-vector space U≤D corresponds to the
k-vector space generated by the homogeneous polynomials{

xαfh
i : α ∈ Zn+1

≥0 , 1 ≤ i ≤ m and totaldeg(xαfh
i) = D

}
.

This space equals the D-th homogeneous component of the homogeneous ideal I
spanned by

{
fh
1 , . . . , f

h
m

}
⊂ k[x0, x1, . . . , xn]. Now we are ready to proceed to the

following two important definitions. These definitions exist in greater generality of
graded modules but for our purpose it suffices to restrict ourselves to homogeneous
ideals.

Definition 5.5. For a homogeneous ideal I ⊂ k[x0, x1, . . . , xn], let the Hilbert
function HFI(D) be defined as

HFI(D) = dimk((k[x0, x1, . . . , xn]/I)D).

Definition 5.6. The power series

HS(I) =
∞∑

D=1

HFI(D)TD ∈ Z[[T]]

is called the Hilbert series of I.

5.2. APPROXIMATED LOWEST DEGREE FOR XL 77

According to [Die04, p. 6], χ(D) satisfies

χ(D) = dimk(P≤D)− dimk(U≤D)

= dimk(P≤D/U≤D)(5.3)

= dimk(k[x0, x1, . . . , xn]D/〈fh
1 , . . . , f

h
m〉D)

= dimk((k[x0, x1, . . . , xn]/I)D)

= HFI(D).(5.4)

The derivation of a lower bound for D satisfying expression (5.2) is based on
the observation that the coefficients of the Hilbert series of a homogeneous ideal
are lower bounded by the Hilbert series of a so-called generic system of forms.

Definition 5.7. A homogeneous polynomial g =
∑

i cix
i ∈ k[x0, x1, . . . , xn]

of degree d is generic if all monomials of total degree d in k[x0, x1, . . . , xn] have
coefficients in g and these coefficients are algebraically independent over the prime
field of k.

A system of generic homogeneous polynomials as above is a called generic
system of forms. The reader is referred to [Fro85] for the definition in the general
case of graded algebras. The lower bound for HFI(D) is formulated in the following
two propositions.

Proposition 5.8. Let k be any field and let g1, . . . , gm ∈ k[x0, x1, . . . , xn] be
homogeneous polynomials of respective total degrees d1, . . . , dm spanning the homo-
geneous ideal I. Let HSgen ∈ Z[[T]] be the Hilbert series corresponding to a generic
system of forms and HFgen(D) its D-th coefficient. The Hilbert series correspond-
ing to the homogeneous ideal I satisfies the following coefficient-wise inequality

HFI(D) ≥ HFgen(D), for D ≥ 0.

Proof. See [Val96, p. 317]. �

The Hilbert series of a generic system of forms is the consequence of a well
known conjecture, known as the maximal rank conjecture [Val96, p. 317]. For m
homogeneous polynomials in k[x0, x1, . . . , xn], this conjecture is proven for m ≤ n.
Nevertheless, the correctness of the conjecture for general m and n is highly likely.

Proposition 5.9. Let the finite field k = GF (2). If the number of polynomials
m in a generic system of forms g1, . . . , gm ∈ k[x0, x1, . . . , xn] with respective total
degrees d1, . . . , dm satisfies m ≤ n, then this generic system of forms is a regular
sequence in k[x0, x1, . . . , xn] and the Hilbert series of this system of forms equals
the Hilbert series of a regular sequence, being

(5.5)
(1 + T)n+1∏m
j=1(1 + T dj)

.

Proof. See [Val96, p. 317]. �

Under the maximal rank conjecture, Proposition 5.9 holds for general m and
n. Now, let dgen denote the smallest D for which the expression HFgen(D) ≤ D
holds under this conjecture. For 1 ≤ n ≤ 32 and m = n, the different values for
dgen are plotted in Figure 5.3. Figure 5.3 also illustrates that dgen is very similar
to dXL for a random system of multivariate, quadratic equations including the field
equations.

78 5. ANALYSIS OF XL AND F4

Figure 5.3. The first 32 values of dgen and the average dXL of
a multivariate, quadratic system of n equations in n variables (10
samples). The field equations were included during the simula-
tions.

Remark 5.10. The development of dgen is very close to linear for a larger
domain. Its linear least-square fit for 1 ≤ n ≤ 512 equals 3.89 + 0.0996n.

Hence, for general ideals the value of D for which it is likely that XL finds a
solution is claimed to be lower bounded by dgen. Unfortunately, there are examples
satisfying D = dmin < dgen while χ(D) > D. Some equations, for example those
corresponding to HFE plaintext attacks, have a lower dmin than the dgen predicted
by the foregoing analysis. The following example shows a HFE plaintext attack
having a smaller dmin than the lower bound depicted in Figure 5.3.

Example 5.11 (Incremental XL in Magma). Applying XL two times for degree
D = 3, returns a partial solution for the set of HFE equations stated in Appendix
B while having χ(3) = 220− 179 � 3 + 1 and smaller dmin = 3 and dXL = 3 than
the dgen = 4 predicted above.
> y , F := HFEencrypt([1,1,1,1,1,1,1,1,1]);

> s, F2 := XL(F, 3);

*********** XL, D=3 **************

Time of EchelonForm(Fmatrix) (s) : 0

*** Summary ***

Memory size of process (kb) : 502

Size of XL matrix : 180 rows and 220 columns

Size of row reduced XL matrix : 179 rows and 220 columns

Number of univariate polynomials : 17

Number of single root polynomials : 15

Number of univariate monomials : 28

Number of variables solved : 5

Is the system a Groebner Basis : false

Substitution sequence [[var,root]] :

[[6, 1], [9, 1], [5, 1], [1, 1], [8, 1]]

> // Apply XL to the set F2 of reduced polynomials returned by XL(F,3)

> s, F2 := XL(F2, 3);

*********** XL, D=3 **************

5.3. F5 AND THE INDEX OF REGULARITY 79

Time of EchelonForm(Fmatrix) (s) : 0.01

*** Summary ***

Memory size of process (kb) : 2760

Size of XL matrix : 935 rows and 220 columns

Size of row reduced XL matrix : 219 rows and 220 columns

Number of univariate polynomials : 27

Number of single root polynomials : 27

Number of univariate monomials : 28

Number of variables solved : 9

Is the system a Groebner Basis : true

Substitution sequence [[var,root]] :

[[4, 1], [7, 1], [3, 1], [6, 1], [2, 1],

[9, 1], [5, 1], [1, 1], [8, 1]]

Joux and Faugère derived that for a secret HFE polynomial of degree d satisfy-
ing 17 ≤ d ≤ 96, the largest total degree of a critical pair during the Gröbner Basis
computation did not exceed four, as was shown in Table 3.2 in Section 3.2. While
trying to understand why, we found algebraic systems coming from cryptography
with dmin < dgen where χ(D) ≤ D + 1 is not a necessary condition for XL to find
a partial solution.

Hence, a system that is weaker than a random multivariate quadratic system
of equations, for example HFE, is likely to have a dmin smaller than the smallest
degree satisfying the lower bound derived with generic Hilbert series. Therefore,
this way of analyzing a cipher might overestimate its strength.

5.3. F5 and the index of regularity

This section tries to shed some light on two important claims concerning the
complexity of algebraic attacks. The proofs are hard to verify but simulations point
in the same direction. The results enable the cryptanalyst to distinguish a random
algebraic system from an algebraic system having a weaker structure, like HFE.

Figure 5.4. Comparison of dreg and the average degree to find a
lex Gröbner Basis or a partial solution with XL for HFE.

In [FA04], Faugère and Ars propose that their F4-like implementation of the
F5 criterion is able to find a Gröbner Basis for a maximal degree dF5 that equals

80 5. ANALYSIS OF XL AND F4

dXL. In a previous report [MFS03], Bardet, Faugère and Salvy assert that the
so-called index of regularity forms an upper bound for dF5, if F5 is applied to
homogeneous regular sequences or sets of polynomials that forms a regular sequence
after homogenization.

The authors conjecture in the same paper that the proportion of sets of n
polynomials in n variables of this type tends to 1 as n goes to infinity. Hence, the
index of regularity should be an upper bound for dXL for large random algebraic
systems.

The authors [MFS03] give a definition for degree of regularity in the special
case of algebraic systems over the finite field of two elements and claim that this is
equivalent to the index of regularity as defined in [CLO96, p. 449]. Both definitions
are included for the sake of completeness. Firstly, we present the definition of
Bardet, Faugère and Salvy in the special case of polynomials over GF (2).

Definition 5.12. Let F = {f1, . . . , fm} be a set of polynomials in the polyno-
mial ring GF (2)[x1, . . . , xn] and I = 〈f1, . . . , fm〉. The degree of regularity of I as
defined in [MFS03] equals the minimal degree d such that{

LT (f) : f ∈ Ih, totaldeg(f) = d
}
,

equals the set of monomials of degree d in the quotient space of the polynomial ring
containing Ih, modulo the field equations.

We define a function that stores information about the vector space dimension
of the quotient space of an ideal I up to a certain degree, P≤D/I≤D, see for example
[CLO96, p. 447].

Definition 5.13. Let I be the ideal spanned by the set F ⊂ P . The affine
Hilbert function, aHFI , of the intersection I ∩ P≤D is defined by

(5.6) aHFI(D) = dimk(P≤D/I≤D) = dimk(P≤D)− dimk(I≤D).

Now, the common definition of index of regularity is as follows.

Definition 5.14 (Index of regularity from [CLO96]). The polynomial which
equals the affine Hilbert function aHFI(d) for sufficiently large d is called the affine
Hilbert polynomial of the ideal I and is denoted by aHPI(d). The smallest integer
dreg such that

aHPI(d) = aHFI(d), for all d ≥ dreg,

is called the index of regularity .

Unfortunately, our implementation of F5 does not seem to behave as nicely as
claimed by Faugère. In spite of this, Figures 5.4 and 5.5 show that the index of
regularity forms an upper bound for the degree at which XL is able to return a
Gröbner Basis in the HFE and random multivariate, quadratic case. The latter
shows that the smallest D for which XL finds a Gröbner Basis in the random
multivariate, quadratic case equals dreg for examples n = 7, 8, 9 and 10. Although
XL may not be as efficient in terms of matrix size as for example F4, it does show
that there exist Gröbner Basis algorithms which are substantially better in terms
of degrees of intermediate polynomials.

5.3. F5 AND THE INDEX OF REGULARITY 81

Figure 5.5. Comparison of the average degree to find a lex
Gröbner Basis for a random multivariate, quadratic system of n
equations in n variables over GF (2), including the field equations
(50 samples).

CHAPTER 6

Conclusion

Let us summarize the various ideas concerning the complexity of algebraic
attacks. Throughout the report we have distinguished two important measures for
complexity, the first being the size of the largest matrix involved and the second
being the largest degree of a polynomial during the Gröbner Basis computation.

We have seen that the largest degree of a critical pair during the course of the
algorithm F4 gives a reliable upper bound on the parameter D for a successful XL
attack. Even for small D the matrices involved during XL computations are much
larger since there is no efficient selection criterion installed. However, XL is useful
in another sense.

In Section 5.1, the similarities between F4 and XL have been made explicit. We
showed that XL is in fact a Gröbner Basis algorithm when applied incrementally.
The smallest degree for which incremental XL finds a Gröbner Basis suggests the
existence of a Gröbner Basis algorithm that is able to keep the total degree of
intermediate polynomials to a minimum.

Faugère claims that his F5 is close to optimal in this sense and that it does
not create critical pairs that reduce to zero in the case of a regular sequence of
polynomials. Therefore, the F5 criterion deserves further investigation. In Section
4.4 the F5 criterion is explained. This section also introduces the Gebauer and
Möller Installation, which is known to be close to optimal but does not excel in
terms of lowest total degree during computations.

With XL or a similar algorithm that is able to keep the total degree of the
intermediate computations as low as possible, the cryptanalyst has a tool to make
a distinction between random algebraic systems and systems with more structure.
Like HFE, the latter is less resistant to algebraic attacks and simulations show that
for increasing number of equations and variables the largest total degree during
computations is smaller on average.

The robustness of cryptosystems to XL attacks is sometimes based on a com-
plexity analysis based on Hilbert series. Diem summarizes the results regarding
this analysis in a clear paper that is accepted for AsiaCrypt in December 2004.
In Section 5.2 we discuss this analysis. The stated condition at which XL returns
a partial solution does not seem to be necessary for certain systems of equations
coming from cryptography. The claimed polynomial complexity of the HFE attack
by Faugère and Joux supports our idea.

Directions for further investigation might include the search for a degree optimal
Gröbner Basis algorithm with an effective criterion to avoid useless critical pairs.
Furthermore, the complexity analysis of XL based on Hilbert series requires further
investigation since it seems that some discrepancies exist. Finally, we think it
is interesting to find out whether there exist symmetric cryptosystems that show
behavior similar to HFE in terms of dXL.

83

APPENDIX A

Algorithms written for Magma

This chapter contains routines to simulate algebraic attacks on various cryp-
tosystems. We implemented the following algorithms in the computer algebra lan-
guage Magma [BCP97]:

• The four byte blockcipher from Section 3.1;
• The asymmetric cryptosystems HFE introduced in Section 3.2;
• The Homogeneous Buchberger Algorithm explained in Section 4.2;
• The algorithm F4 from Section 4.3;
• The algorithm F5 explained in Section 4.4.

The routines work as follows:

• Let in and k be sequences of four times two letters representing hexadec-
imal values, for example [[”1”, ”3”], [”2”, ”4”], [”5”, ”7”], [”a”, ”c”]]. The
command fbbc(in,key,r) returns a similar sequence, representing four
bytes, corresponding to the ciphertext after encrypting plaintext in with
key key for r rounds of the four byte blockcipher.

The routine fbbcequations(in,out,r) returns the set of polynomi-
als describing an algebraic key recovery attack for plaintext in, output
out and r rounds of encryption.

• HFE(in) returns a sequence of ciphertext bits and the equations for a
plaintext recovery attack. The input is a binary sequence of arbitrary
length. The routine randomly generates the secret affine transformations
and HFE polynomial of maximal degree 64.

• HomBuchGM(F) returns the Gröbner Basis corresponding to a sequence of
polynomials F and the set of critical pairs considered during the compu-
tation.

• F4(F) returns a Gröbner Basis, the largest degree of a critical pair, the
number of critical pairs, the number of rows in the largest reduction ma-
trix, the largest degree of an intermediate polynomial during computation
and the density of the largest reduction matrix respectively.

• F5(F) returns the Gröbner Basis, a boolean value if the answer is a
Gröbner Basis, the number of created S-polynomials, the largest degree
of an S-polynomial and the largest degree of a contributing critical pair.

• Let F be a sequence of polynomials and D an integer. The command
XL(F,D) returns a sequence of solved variables, the polynomials corre-
sponding to the matrix after row reduction, a boolean variable if these
polynomials form a Gröbner Basis, the number of created polynomials,
the number of polynomials after reduction, the size of the support, the
original polynomials evaluated at the partial solution and the the time it
takes Magma to row reduce the matrix for degree D.

85

86 A. ALGORITHMS WRITTEN FOR MAGMA

A.1. Shared routines

// Calculate an S-polynomial, used in HomBuchGM and F4

S := function(f,g)

LTf := LeadingTerm(f);

LTg := LeadingTerm(g);

m := LCM(LTf,LTg);

return (m div LTf) * f - (m div LTg) * g;

end function;

// A function to update the critical pairs without the Gebauer and Moeller criteria, used in HomBuchGM and F4

UpdatePairs := function(D, F)

// Initialization

s := #F;

C := {[i,s] : i in [1..s-1]};

D := D join C;

return D;

end function;

// The Gebauer and Moeller criteria, used in HomBuchGM and F4

// See for an explanation Gebauer and Moeller (1987) On an Installation of Buchberger’s Algorithm

// Last modifications 13-8-2004

UpdateGM := function(D, F)

// Initialization

t := #F;

// Precompute all leading terms

T := [LeadingTerm(F[i]) : i in [1..t]];

// Rule B_t(i,j)

D := {p : p in D | LCM(T[p[1]],T[p[2]]) ne LCM(LCM(T[p[1]],T[p[2]]), T[t])

or LCM(T[p[1]],T[t]) eq LCM(T[p[1]],T[p[2]])

or LCM(T[p[1]],T[p[2]]) eq LCM(T[p[2]],T[t])

or LCM(T[p[1]],T[t]) eq LCM(T[p[2]],T[t])};

// Create the set D1

D1 := {[i,t] : i in [1..t-1]};

// Rule M(i,t)

for i in [1..t-1] do

if exists(p1){ p : p in D1 | IsDivisibleBy(LCM(T[i],T[t]), LCM(T[p[1]],T[p[2]]))

and LCM(T[i],T[t]) ne LCM(T[p[1]],T[p[2]]) }

then

Exclude(~D1, [i,t]);

print "Delete in D1 pair ", [i,t];

end if;

end for;

// Modified criterion F

// Create the set of all LCM monomials corresponding to the pairs in D1

tauset := {LCM(T[p[1]],T[p[2]]) : p in D1};

D1new := {};

while not IsEmpty(tauset) do

// Treat every subset of pairs of D1 with LCM equal to tau seperately

tau := Rep(tauset);

Exclude(~tauset, tau);

subsetD1tau := {ptau : ptau in D1 | LCM(T[ptau[1]],T[ptau[2]]) eq tau};

if exists(p1){ ps : ps in subsetD1tau | T[ps[1]]*T[ps[2]] eq LCM(T[ps[1]],T[ps[2]])}

then

subsetD1tau := {p1};

else

subsetD1tau := {Rep(subsetD1tau)};

end if;

D1new := D1new join subsetD1tau;

end while;

D1new := {p : p in D1new | T[p[1]]*T[p[2]] ne LCM(T[p[1]],T[p[2]])};

return D join D1new;

end function;

// auxilary function to convert polynomial to sequence, used in F4 and XL

polytovector := function(poly, monseq) // create vector

representing

// the poly in R^(#monseq) with

// respect to the sequence of

// monomials of the system.

// check the parent object of the polynomial to create a vector over the right basering

A.2. FOUR BYTE BLOCKCIPHER FROM SECTION ?? 87

P := Parent(poly);

vector := [BaseRing(P) | 0 : i in [1..#monseq]];

M:=Monomials(poly);

for i in [1..#M] do

vector[Index(monseq, M[i])]:=MonomialCoefficient(poly,M[i]);

end for;

return vector;

end function;

// auxilary function to convert vector to polynomial, used in F4 and XL

vectortopoly := function(row, monseq) // the inverse of

polytovector

n := #monseq;

if row eq [0 : x in [1..n]] then poly := 0;

else poly := &+[monseq[i]*row[i] : i in [1..#monseq] | row[i] ne 0];

end if;

return poly;

end function;

// Create a function addwithcarry to assist in the generation of all the divisors of a term for Simplify.

// This function creates a list of all vectors with smaller values in all positions than a given maxvector.

// It is used in F4 and XL.

addwithcarry := function(tempvector, maxvector, pos);

if tempvector[pos] lt maxvector[pos] then

tempvector[pos] +:= 1;

else

tempvector[pos] := 0;

// recursion

tempvector := $$(tempvector, maxvector, pos + 1);

end if;

return tempvector, pos;

end function;

A.2. Four byte blockcipher from Section 3.1

// A four byte blockcipher

// Start: 13-5-2004, last update 14-6-2004

// Implementation of a small blockcipher with similarities to AES scalable in the number of rounds.

// Converts a sequence of hexidecimal characters to a binary representation

hextobinary := function(hex)

bin := [];

for i in [1..#hex] do

case hex[i]:

when "0": bin cat:= [0,0,0,0];

when "1": bin cat:= [1,0,0,0];

when "2": bin cat:= [0,1,0,0];

when "3": bin cat:= [1,1,0,0];

when "4": bin cat:= [0,0,1,0];

when "5": bin cat:= [1,0,1,0];

when "6": bin cat:= [0,1,1,0];

when "7": bin cat:= [1,1,1,0];

when "8": bin cat:= [0,0,0,1];

when "9": bin cat:= [1,0,0,1];

when "a": bin cat:= [0,1,0,1];

when "b": bin cat:= [1,1,0,1];

when "c": bin cat:= [0,0,1,1];

when "d": bin cat:= [1,0,1,1];

when "e": bin cat:= [0,1,1,1];

when "f": bin cat:= [1,1,1,1];

end case;

end for;

return bin;

end function;

// Converts the sequence of bits to its hexidecimal representation

bintohex := function(bin)

hex := [];

for i in [1..#bin] do

case bin[i]:

when [0,0,0,0]: hex cat:= ["0"];

when [1,0,0,0]: hex cat:= ["1"];

when [0,1,0,0]: hex cat:= ["2"];

when [1,1,0,0]: hex cat:= ["3"];

when [0,0,1,0]: hex cat:= ["4"];

when [1,0,1,0]: hex cat:= ["5"];

when [0,1,1,0]: hex cat:= ["6"];

when [1,1,1,0]: hex cat:= ["7"];

88 A. ALGORITHMS WRITTEN FOR MAGMA

when [0,0,0,1]: hex cat:= ["8"];

when [1,0,0,1]: hex cat:= ["9"];

when [0,1,0,1]: hex cat:= ["a"];

when [1,1,0,1]: hex cat:= ["b"];

when [0,0,1,1]: hex cat:= ["c"];

when [1,0,1,1]: hex cat:= ["d"];

when [0,1,1,1]: hex cat:= ["e"];

when [1,1,1,1]: hex cat:= ["f"];

end case;

end for;

return hex;

end function;

// Subroutine for the S-box, it warns when an ’inversion’ of zero occurs.

Sbox := function(In, F)

Out := [F|];

for i in [1..#In] do

if In[i] eq 0 then

print "Inversion of zero.";

Out[i] := 0;

else

Out[i] := In[i]^(-1);

end if;

end for;

return Out;

end function;

// A 4 byte blockcipher function 4bbc that encrypts plaintext In with key k using r rounds

// The plaintext and key bytes are char pairs representing hexadecimal numbers

fbbc := function(In, k, r)

print "*********** 4 byte blockcipher ************";

print "Plaintext";

print In;

print "Key bytes";

print k;

print "First step";

P<x> := PolynomialRing(GF(2));

// Use the Rijndael polynomial to specify the finite field isomorphism

p := x^8+x^4+x^3+x+1;

F<t> := ext< GF(2) | p >;

// Initialize memore state variables

b := [];

c := [];

d := [];

// Express the 4 byte key and plaintext as elements of F

// Example: ["1","2"] is encoded as [1,0,0,0,0,1,0,0] by hextobinary

// this corresponds to t^1+t^4 in field F

In := [&+[hextobinary(In[i])[j+1]*t^j : j in [0..7]] : i in [1..4]];

k := [&+[hextobinary(k[i])[j+1]*t^j : j in [0..7]] : i in [1..4]];

// Start actual encryption

// Add key

a := [k[i]+In[i] : i in [1..4]];

print "a=",a;

// Start applying multiple rounds of encryption

d[1] := a;

for round in [1..r] do

print "Round", round;

// S-box

b[round] := Sbox(d[round], F);

// Mixing layer

c[round] := [&+[b[round][j] : j in [1..4] | i ne j] : i in [1..4]];

// Add key

d[round+1] := [k[i]+c[round][i] : i in [1..4]];

end for;

print "Last step";

// S-box

e := Sbox(d[r+1], F);

print "e=",e;

// Add key

Out := [k[i]+e[i] : i in [1..4]];

// Convert the finite field elements to hexadecimal representation

Out := [bintohex([Eltseq(Out[i])[1..4], Eltseq(Out[i])[5..8]]) : i in [1..4]];

print "Return the ciphertext";

return Out;

end function;

A.3. HIDDEN FIELD EQUATIONS 89

// Create the equations corresponding to the 4bbc cipher for r rounds, input In and output Out

fbbcequations := function(In, Out, r)

// Initialize the finite field F with Rijndael polynomial p

P<x> := PolynomialRing(GF(2));

p := x^8+x^4+x^3+x+1;

F<t> := ext< GF(2) | p >;

// Create a new polynomialring with 12+12r variables, the total number of variables

// needed for r rounds

Q<[z]> := PolynomialRing(F, 12+12*r, "lex");

In := [&+[hextobinary(In[i])[j+1]*t^j : j in [0..7]] : i in [1..4]];

Out := [&+[hextobinary(Out[i])[j+1]*t^j : j in [0..7]] : i in [1..4]];

// Create the correspondence between state variables and variables in polynomialring Q<[z]>

// See Chapter 3 in the thesis for the description of the variables

a := [z[1], z[2], z[3], z[4]];

b := &cat[[[z[1+4*i], z[2+4*i], z[3+4*i], z[4+4*i]]] : i in [1..r]];

c := &cat[[[z[4*r+1+4*i], z[4*r+2+4*i], z[4*r+3+4*i], z[4*r+4+4*i]]] : i in [1..r]];

d := [[a[1],a[2],a[3],a[4]]] cat

&cat[[[z[8*r+1+4*i], z[8*r+2+4*i], z[8*r+3+4*i], z[8*r+4+4*i]]] : i in [1..r]];

e := [z[5+12*r],z[6+12*r],z[7+12*r],z[8+12*r]];

// The key bytes are the last 4 variables of the 13+12r variables z[1],z[2],...

k := [z[9+12*r],z[10+12*r],z[11+12*r],z[12+12*r]];

// Create the set of polynials corresponding to the equations

EQ := [In[i]+k[i] - a[i] : i in [1..4]] cat

// Represent the different rounds by polynomials

// Variable round is a counter for the rounds

&cat[

// S-box polynomials

[d[round][i]*b[round][i] - 1 : i in [1..4]] cat

// Mixing layer

[c[round][i] - &+[b[round][j] : j in [1..4] | i ne j] : i in [1..4]] cat

// Key addition

[c[round][i]+k[i] - d[round+1][i] : i in [1..4]]

: round in [1..r]

]

cat

// And the final S-box and key addition step

[d[r+1][i]*e[i]-1 : i in [1..4]] cat

[e[i]+k[i] - Out[i] : i in [1..4]];

// Rename the intermediate veriables z in the polynomialring Q to the more common characters

nc := ["a_1","a_2","a_3","a_4"] cat

["b_" cat IntegerToString(i) : i in [1..4*r]] cat

["c_" cat IntegerToString(i) : i in [1..4*r]] cat

["d_" cat IntegerToString(i) : i in [1..4*r]] cat

["e_1","e_2","e_3","e_4"] cat

["k_1","k_2","k_3","k_4"];

AssignNames(~Q, nc);

// EQ contains 4(3+r3)=12+12r polynomials

return EQ;

end function;

A.3. Hidden Field Equations

// construction of HFE equations, 1-6-2004

// Convert a quadratic element of a quotient ring created in HFE() to an element of a polynomial ring

QRtoPR := function(qrpoly)

QR := Parent(qrpoly);

n := Rank(QR)-1;

PR<[x]> := PolynomialRing(BaseRing(QR), n, "lex");

M := Monomials(qrpoly);

C := Coefficients(qrpoly);

prpoly := 0;

coeff := 0;

for m in [1..#M] do

if exists(t){ [i, j] : i, j in [1..n] | QR.i*QR.j eq M[m] }

or exists(t){ [i] : i in [1..n] | QR.i eq M[m] }

then

if #t eq 2 then

90 A. ALGORITHMS WRITTEN FOR MAGMA

prpoly := prpoly + C[m]*PR.t[1]*PR.t[2];

else

prpoly := prpoly + C[m]*PR.t[1];

end if;

else

c := [coeff : coeff in BaseRing(QR) | coeff eq M[m]][1];

prpoly := prpoly + c;

end if;

end for;

return PR ! prpoly;

end function;

// A HFE public key generator of size n bits

// The affine transformations are randomly generated, f=x*x^8 + x^4*x^16

HFE := function(n)

P<[x]> := PolynomialRing(GF(2), n+1);

// Create a irreducible polynomial of degree n

// p := P.(n+1)^5 + P.(n+1)^4 + P.(n+1)^3 + P.(n+1) + 1;

p := Evaluate(IrreduciblePolynomial(GF(2), n), P.(n+1));

// Construct the quotient ring Q=P[X]/<p>

Q := quo<P| p>;

x := [P.i : i in [1..n]];

// Initialize matrices A and B to zero

A := [[GF(2) | 0 : i in [1..n]] : i in [1..n]];

B := A;

// Set the matrices and vectors defining the affine transformations s and t

// Define A

while not IsInvertible(Matrix(A)) do

A := [RandomSequenceRSA(100, n) : i in [1..n]];

end while;

// Define B

while not IsInvertible(Matrix(B)) do

B := [RandomSequenceRSA(100, n) : i in [1..n]];

end while;

// And c and d

c := RandomSequenceRSA(100, n);

d := RandomSequenceRSA(100, n);

// The affine transformation s(x) = A*x + c

u := [&+[A[j][i]*x[i] : i in [1..n]] : j in [1..n]];

u := [u[i] + c[i] : i in [1..n]];

// HFE prescribes to use an f with more than one monomial

// Otherwise the scheme is equivalent to C*

// Apply secret polynomial f: v = u*u^8 + u^4*u^16

// v := &+[u[i]*P.(n+1)^((i-1)) : i in [1..n]] * &+[u[i]*P.(n+1)^(8*(i-1)) : i in [1..n]]

// + &+[u[i]*P.(n+1)^(4*(i-1)) : i in [1..n]] * &+[u[i]*P.(n+1)^(16*(i-1)) : i in [1..n]];

// Randomize f, for maximal exponent 2^e+2^e and 5 terms

// This randomized secret HFE polynomial has average degree 40 and maximal degree 64

e := 5;

exp_v := [0 : i in [1..10]];

// It might happen that no n-th powers of the root of p exist

// Therefore we test if v has length n with boolean id

id := false;

while not id

// and TotalDegree(&+[P.(n+1)^(exp_v[i])*P.(n+1)^(exp_v[i+1]) : i in [1..10 by 2]]) le 17

do

exp_v := [2^Random(e) : i in [1..10]];

v := &+[&+[u[i]*P.(n+1)^(exp_v[j]*(i-1)) : i in [1..n]]

* &+[u[i]*P.(n+1)^(exp_v[j+1]*(i-1)) : i in [1..n]] : j in [1..10 by 2]];

v := Coefficients(Q ! v, P.(n+1));

v := [v[i] : i in [1..#v]];

// Test if v has length n

id := IsDefined(v,n);

end while;

// The affine transformation t: y = B^-1(v-d)

v := [v[i] - d[i] : i in [1..n]];

Binv := RowSequence(Matrix(B)^-1);

y := [&+[Binv[j][i]*v[i] : i in [1..n]] : j in [1..n]];

// Convert the quadratic polynomials in the quotient ring to elements

A.4. HOMOGENEOUS BUCHBERGER ALGORITHM 91

// of the polynomial ring by means of the function QRtoPR

PR := Parent(QRtoPR(y[1]));

PRy := [PR ! QRtoPR(y[i]) : i in [1..#y]];

/* print "HFE Setup:";

print "Number of bits n=", n;

print "Affine transformation s: A=", A;

print "c=", c;

print "Affine transformation t: B=", B;

print "d=", d;

*/

print "HFE polynomial f=",

&+[P.(n+1)^(exp_v[i])*P.(n+1)^(exp_v[i+1]) : i in [1..10 by 2]];

// print "Degree f=", TotalDegree(&+[P.(n+1)^(exp_v[i])*P.(n+1)^(exp_v[i+1]) : i in [1..10 by 2]]);

// print "Generated public key equations";

return PRy;

end function;

HFEencrypt := function(plaintext)

// Capute n, the number of plaintext bits and variables in the public key

n := #plaintext;

// Generate the public key

PK := HFE(n);

// Grab the properties of the polynomial ring of PK

P := Parent(PK[1]);

// Generate the ciphertext

y := [Evaluate(PK[i], plaintext) : i in [1..n]];

// Generate the basis of the ideal corresponding to the solutions

F := [PK[i] - y[i] : i in [1..n]];

F := F cat [P.i^2 - P.i : i in [1..n]];

// Return the ciphertext y and a basis F of the ideal including the field equations

return y, F;

end function;

A.4. Homogeneous Buchberger Algorithm

// Start: 23-4-2004

// Implementation of the Gebauer and Moeller criteria, BuchGM.

// Via the homogenization of BuchGM we try to create an F4 variant with the GM criteria.

// Eventually we try to create an F4 variant with minimal critical pairs.

// Buchberger algorithm with the Gebauer and Moeller criteria

// Last modifications 23-4-2004

HomBuchGM := function(F)

// Initialization

r := #F;

G := [F[1]];

B := {};

Bdone := [];

for t in [2..r] do

Append(~G, F[t]);

B := UpdateGM(B, G);

end for;

print "After Initialization, B = ", B;

// Iteration

while not IsEmpty(B) or not IsEmpty(F) do

// The set of LCM’s corresponding to the pairs in B

LCMB := {LCM(LeadingTerm(G[p[1]]), LeadingTerm(G[p[2]])) : p in B};

// The degree of the minimal element of LCMB and F w.r.t. the ordering

d := Min([TotalDegree(i) : i in F cat Setseq(LCMB)]);

// Select those critical pairs in B which have degree d

Bd := { p : p in B | TotalDegree(LCM(LeadingTerm(G[p[1]]), LeadingTerm(G[p[2]]))) eq d};

B := B diff Bd;

// Select those elements in F of degree d

Fd := [g : g in F | TotalDegree(g) eq d];

F := [g : g in F | TotalDegree(g) ne d];

92 A. ALGORITHMS WRITTEN FOR MAGMA

// run through all critical pairs of degree d

while not IsEmpty(Bd) do

ExtractRep(~Bd, ~p); // probably faster than Min and Exclude

I := p[1];

J := p[2];

Append(~Bdone, p);

h := S(G[I], G[J]);

h := NormalForm(h, G);

if h ne 0 then

Append(~G, h);

B := UpdateGM(B, G);

// B := UpdatePairs(B,G);

print "In Iteration after Update, B = ", B;

end if;

end while;

// run through all original elements of degree d

while not IsEmpty(Fd) do

h := Fd[1];

h := NormalForm(h, G);

if h ne 0 then

Append(~G, h);

B := UpdateGM(B, G);

// B := UpdatePairs(B,G);

print "In Iteration after Update, B = ", B;

end if;

Remove(~Fd, 1);

end while;

end while;

return G, Bdone;

end function;

A.5. Algorithm F4

/*

Start: 23-4-2004

(26-5-2004) Features of this version:

the Gebauer and Moeller-criteria,

suitable for homogeneous systems,

intermediate reduction w.r.t. G of the Fplus polynomials,

improved matrix to polynomial conversion (via RowSequence),

the improved F4 Symbolic Preprocessing.

(Since Magma 2.11 it is possible to pinpoint the performance bottlenecks in the implementation with a profiler.)

Last update: 13-9-2004

*/

// Set the outputprecision of the print statement to a maximum of 5 significant digits

AssertAttribute(FldPr, "OutputPrecision", 5);

F4Simplify := function(t, f, SPFred, SPFplus)

// Create the set M of all divisors of a term t

P := Parent(t);

r := Rank(P);

d := #SPFred;

M := [];

pos := 1;

// maxvector is the multidegree of the term t

maxvector := [Degree(t,i) : i in [1..r]];

tempvector := [0 : i in [1..r]];

// To create the set M we make use of the subroutine addwithcarry

while tempvector ne maxvector and pos le r do

tempvector, pos := addwithcarry(tempvector, maxvector, pos);

Include(~M, &*[(P.i)^tempvector[i] : i in [1..r]]);

end while;

M := Reverse(Sort(M));

s := #M;

for j in [1..s] do

for k in [1..d] do

if IsDefined(SPFplus, k) and IsDefined(SPFred, k)

A.5. ALGORITHM F4 93

and exists(fj){ g : g in SPFred[k] | M[j]*f eq g } then

// exists(p){ g : g in SPFplus[k] | LeadingMonomial(g) eq LeadingMonomial(fj) };

p := Rep({ g : g in SPFplus[k] | LeadingMonomial(g) eq LeadingMonomial(fj) });

if j ne 1 then

return $$(t div M[j], p, SPFred, SPFplus);

else

return 1, p;

end if;

end if;

end for;

end for;

return t, f div LeadingCoefficient(f);

end function;

// Symbolic Preprocessing

SymbPrep := function(L, G, SPFplusd, SPFred)

F := {};

for l in L do

t, f := F4Simplify(l[1], l[2], SPFplusd, SPFred);

Include(~F, t*f);

end for;

D := {LeadingMonomial(i) : i in F}; // the set of leading terms

M := &join{Seqset(Monomials(i)) : i in F}; // create the support of F

while D ne M do

m := Rep(M diff D); // pick one element m from M\D

Include(~D, m);

if exists(t){ g : g in G | IsDivisibleBy(m, LeadingTerm(g)) } then

mf, f := F4Simplify(m div LeadingTerm(t), t, SPFplusd, SPFred);

Include(~F, mf * f);

end if;

end while;

return F;

end function;

FR := function(L, G, SPFplusd, SPFred, EFtimesum)

// print "Number of elements in L (2x the number of critical pairs):", #L;

// print "Number of elements in G (the number of basispolys so far):", #G;

// print "Symbolic Preprocessing... ";

F := SymbPrep(L, G, SPFplusd, SPFred);

// create the ordered support of F

// printf "Create the ordered support of F... ";

M := Reverse(Sort(Setseq(&join{Seqset(Monomials(i)) : i in F})));

// ask the characteristics of the polynomial ring

// check whether this is too time consuming

P := Parent(Rep(L)[1]);

// create the matrix Fmatrix corresponding to the set of polynomials F

// printf "Create the Fmatrix from F... ";

Fmatrix := Matrix(BaseRing(P), [polytovector(i, M) : i in F]);

densty := Density(Fmatrix);

printf "Dimension of reduction matrix rows x columns : %o x %o\n", Nrows(Fmatrix), Ncols(Fmatrix);

printf "Density of Fmatrix : %o\n", densty;

// reduce to row echelon form and create the interreduced set of polynomials Fred

EFtime := Cputime();

Fmatrix := EchelonForm(Fmatrix);

EFtimesum := EFtimesum + Cputime(EFtime);

print "Time of EchelonForm(Fmatrix) :", Cputime(EFtime);

// printf "Convert rows to polynomials... ";

// my original choice was to cast the rows of the matrix as vectors

// this was awefully slow so therefore I use the RowSequence operation

Fmatrix := RowSequence(Fmatrix);

nrows := #Fmatrix;

Fred := [vectortopoly(Fmatrix[i], M) : i in [1..nrows]];

Fred := [f : f in Fred | f ne 0];

// create the set of polynomials Fplus with different leading terms than Fred

DF := {LeadingMonomial(i) : i in F}; // the leading monomials of F

// printf "Create the set Fplus of polys with new leading monomials... ";

Fplus := [f : f in Fred | not LeadingMonomial(f) in DF];

94 A. ALGORITHMS WRITTEN FOR MAGMA

return Fplus, Fred, EFtimesum, nrows, densty;

end function;

// Buchberger algorithm with the Gebauer and Moeller criteria

ImpHomF4GM := function(F)

print "****************** F4 ******************";

// Initialization

F := [f : f in F | f ne 0];

totaltime := Cputime();

d := 0; // the degree d of the LCM of the critical pairs

// or the degree of the original polynomials to process

df4cp := 0; // variable to track the maximum d during the algorithm

df4 := 0;

nrowsmax := 0; // variable to track the largest number of rows in the reduction matrix

denstynrowsmax := 0;

r := #F; // the number of original polynomials

G := [F[1]]; // the intermediate set of basispolynomials

B := {}; // the list of indices for the critical pairs

SPFred := []; // initialize sequences for improved reduction

SPFplusd := []; // SPF and SPFplusd are thrown by Symbolic Preprocessing.

nocp := 0; // count the number of critical pairs

redfr := 0; // count the number of redundant polynomials spawned by FR

FRtimesum := 0; // count the total time of the operation FR

UpdateGMtimesum := 0; // count the total time of the operation UpdateGM

EFtimesum := 0; // count the total time the EchelonForm takes

// Iteration

while (not IsEmpty(B) or not IsEmpty(F)) do

// The set of LCM’s corresponding to the pairs in B

LCMB := {LCM(LeadingTerm(G[p[1]]), LeadingTerm(G[p[2]])) : p in B};

// The degree of the minimal element of LCMB and F w.r.t. the ordering

d := Min([TotalDegree(i) : i in F cat Setseq(LCMB)]);

print "";

print "Degree:", d;

// Select those critical pairs in B which have degree d

Bd := { p : p in B | TotalDegree(LCM(LeadingTerm(G[p[1]]), LeadingTerm(G[p[2]]))) eq d};

B := B diff Bd;

// Select those elements in F of degree d

Fd := [g : g in F | TotalDegree(g) eq d];

F := [g : g in F | TotalDegree(g) ne d];

// run through all critical pairs of degree d

if not IsEmpty(Bd) then

// printf "Critical pairs of degree %o exist.\n", d;

// create the set of all polynomials Ld corresponding to the critical pairs

Ld := {};

for p in Bd do

LT1 := LeadingTerm(G[p[1]]);

LT2 := LeadingTerm(G[p[2]]);

Include(~Ld, [(LCM(LT1, LT2) div LT1), G[p[1]]]);

Include(~Ld, [(LCM(LT1, LT2) div LT2), G[p[2]]]);

df4 := Max(df4, TotalDegree((LCM(LT1, LT2) div LT1)* G[p[1]]));

df4 := Max(df4, TotalDegree((LCM(LT1, LT2) div LT2)* G[p[2]]));

end for;

nocp := nocp + (#Ld div 2);

// print "Number of critical pairs considered so far:", nocp;

// Apply the reduction function FR which is specific to F4

// measure the total duration of FR

// and store the intermediate sets Fplusd and Fd

// print "Reduce (FR) the critical pairs";

FRtime := Cputime();

SPFplusd[d], SPFred[d], EFtimesum, nrows, densty := FR(Ld, G, SPFplusd, SPFred, EFtimesum);

FRtimesum := FRtimesum + Cputime(FRtime);

Fplusd := SPFplusd[d];

nrowsmax := Max(nrows, nrowsmax);

if nrows eq nrowsmax then denstynrowsmax := densty;

end if;

A.6. ALGORITHM F5 95

// reduce the new "s-polynomials" created by subroutine FR w.r.t. G

// print "Reduce (NF) the new found s-polynomials created by FR w.r.t. G";

redfr := redfr + #[h : h in Fplusd | NormalForm(h,G) eq 0];

// print "The total number of redundant polys created by FR so far:", redfr;

Fplusd := [NormalForm(h, G): h in Fplusd | NormalForm(h,G) ne 0];

printf "Number of polynomials with new leading terms found : %o \n", #Fplusd;

// print "Update the critical pairs (Gebauer and Moeller) ";

// Remove all polynomials equal to zero from Fplus

Fplusd := [f : f in Fplusd | f ne 0];

// Grab the largest totaldegree of the critical pairs

if not IsEmpty(Fplusd) then

df4cp := Max(d, df4cp);

end if;

for h in Fplusd do

Append(~G, h);

UpdateGMtime := Cputime();

B := UpdateGM(B, G);

// Or without Gebauer and Moeller Installation

// B := UpdatePairs(B,G);

UpdateGMtimesum := UpdateGMtimesum + Cputime(UpdateGMtime);

end for;

end if;

// run through all original elements of degree d

// printf "%o original polynomials of degree %o exist\n", #Fd, d;

while not IsEmpty(Fd) do

h := Fd[1];

h := NormalForm(h, G);

df4 := Max(df4, TotalDegree(h));

if h ne 0 then

Append(~G, h);

B := UpdateGM(B, G);

// B := UpdatePairs(B,G);

end if;

Remove(~Fd, 1);

end while;

print "Size of the intermediate basis :", #G;

print "Current df4 :", df4;

// print "Intermediate basis a Groebner Basis :", IsGroebner(G);

end while;

mtotdeg := Max([TotalDegree(g) : g in G]);

printf "\n*** Summary ***\n";

print "Total time spent on EchelonForm :", EFtimesum;

print "Total time :", Cputime(totaltime);

print "Number of critical pairs considered :", nocp;

print "Largest number of rows in the reduction matrix :", nrowsmax;

print "Density of corresponding matrix :", denstynrowsmax;

print "Highest degree of a contributing critical pair :", df4cp;

print "Highest degree of an S-polynomial (fictitious) :", df4;

print "Highest degree of a Groebner Basis element :", mtotdeg;

return G, df4cp, nocp, nrowsmax, df4, denstynrowsmax;

end function;

// Create the alias F4 for the function ImpHomF4GM

F4 := function(F)

G, df4cp, nocp, nrowsmax, df4, denstynrowsmax := ImpHomF4GM(F);

return G, df4cp, nocp, nrowsmax, df4, denstynrowsmax;

end function;

A.6. Algorithm F5

/*

Implementation of F5.

The algorithm follows the structure of the Homogeneous Buchberger Algorithm as

explained in Faugre’s article "A new efficient algorithm for computing Grbner

Bases without reduction to zero (F5)" from 2002.

Latest modifications: 31-8-2004.

96 A. ALGORITHMS WRITTEN FOR MAGMA

Let P be the polynomial ring K[x_1, ..., x_n] and F = {f_1, ..., f_m} a basis of the ideal I.

During the algorithm, polynomials p are stored as so called rules r.

These rules are implemented as lists in Magma as follows:

r = [* t, i, p *], where

t is a term,

i the index of the i-th canonical basisvector F_i of the module P^m,

p the polynomal,

such that S(r) = t*F_i = v_1(p).

Furthermore, (truncated) Groebner bases and (lists of) lists of rules are stored as sequences in Magma, like [r_1, ..., r_l]

(or [[r_1, ..., r_l]]).

*/

// Bubblesort a sequence

bubblesort := function(P)

changes := 1;

if #P eq 1 then

return P;

end if;

while changes eq 1 do // If the for-loop doesn’t change anything, stop.

changes := 0; // Reset the change indicator.

for j in [#P..2 by -1] do

if P[j] gt P[j-1] then // If P[j] > P[j-1] then swap.

changes := 1; // Changes are made.

Pjtemp := P[j];

P[j] := P[j-1];

P[j-1] := Pjtemp;

end if;

end for;

end while;

return P;

end function;

// Bubblesort a seq of rules by increasing Signature.

signaturebubblesort := function(P)

changes := 1;

P := [p : p in P | not IsEmpty(p)];

if #P eq 1 then

return P;

end if;

while changes eq 1 do

changes := 0;

for j in [#P..2 by -1] do

if P[j, 1] lt P[j-1, 1] then // If P[j,1] < P[j-1,1] then swap.

changes := 1;

Pjtemp := P[j];

P[j] := P[j-1];

P[j-1] := Pjtemp;

end if;

end for;

end while;

changes := 1;

while changes eq 1 do

changes := 0;

for j in [#P..2 by -1] do

if P[j, 2] gt P[j-1, 2] then // If P[j,2] > P[j-1,2] then swap.

changes := 1;

Pjtemp := P[j];

P[j] := P[j-1];

P[j-1] := Pjtemp;

end if;

end for;

end while;

// the following for-loop removes double entries in a sequence of rules

for j in [#P..2 by -1] do

if P[j, 1] eq P[j-1, 1] and

P[j, 2] eq P[j-1, 2] and

P[j, 3] eq P[j-1, 3] then

Remove(~P, j);

end if;

end for;

return P;

end function;

// Bubblesort a seq of lists P, ordered on the totaldegree of the k’th element.

A.6. ALGORITHM F5 97

degreebubblesort := function(P, k)

changes := 1;

P := [p : p in P | not IsEmpty(p)];

if #P eq 1 then

return P;

end if;

while changes eq 1 do

changes := 0;

for j in [#P..2 by -1] do

if TotalDegree(P[j, k]) lt TotalDegree(P[j-1, k]) then

changes := 1;

Pjtemp := P[j];

P[j] := P[j-1];

P[j-1] := Pjtemp;

end if;

end for;

end while;

return P;

end function;

Rewritten := function(u, r_k, r, i)

ri := r_k[2];

for j in [1..#r[i]] do

t_j := r[i][j][1];

if (not t_j in IntegerRing())

and ri eq r[i][j][2] // to test if we are comparing rules with the same F_i

and IsDivisibleBy(u*r_k[1], t_j)

then

return [* u*r_k[1] div t_j, r[i][j] *];

end if;

end for;

return [* u, r_k *];

end function;

RewrittenQ := function(u, r_k, r, i)

test := Rewritten(u, r_k, r, i);

r_l := test[2];

IsRewrittenQ := (r_l[1] ne r_k[1])

or (r_l[2] ne r_k[2])

or not IsDivisibleBy(r_l[3], r_k[3])

or TotalDegree(r_l[3]) ne TotalDegree(r_k[3]);

return IsRewrittenQ;

end function;

CritPair := procedure(~P, r_1, r_2, i, phi)

// Apply the F5 criterion to every new critical pair

// print "Start procedure CritPair.";

// Compare two signatures and normalize them like in Definition 2

// The rules are ordered on Signature, largest Signature is called r_1

if (r_1[2] gt r_2[2]) then // F_k > F_l if k < l

r_temp := r_2;

r_2 := r_1;

r_1 := r_temp;

end if;

if (r_1[2] eq r_2[2]) then

if (r_1[1] lt r_2[1]) then

r_temp := r_2;

r_2 := r_1;

r_1 := r_temp;

end if;

end if;

// If the largest Signature in the possible critical pair is smaller

// than F_i w.r.t. the module term ordering, we reject the pair

if r_1[2] gt i then

// print "Exception: r_1[2] > i.";

// print "";

return ;

end if;

p := [r_1[3], r_2[3]];

// Set t equal to the LCM of the critical pair

t := LCM(LeadingMonomial(p[1]), LeadingMonomial(p[2]));

u := [t div LeadingTerm(p[1]), t div LeadingTerm(p[2])];

98 A. ALGORITHMS WRITTEN FOR MAGMA

// Apply the F5 criterion

// Check if the new Signature does not reduce w.r.t. the previous Grbner Basis G[i+1]

if NormalForm(u[1]*r_1[1], phi) ne u[1]*r_1[1] then

return ;

end if;

if r_2[2] eq i and NormalForm(u[2]*r_2[1], phi) ne u[2]*r_2[1] then

return ;

end if;

// Add the new critical pair to P

P := P cat [[* t, u[1], r_1, u[2], r_2 *]];

end procedure;

Spol := procedure(~F_d, P_d, ~N, ~r, i)

// Subroutine Spol calculates the S-polynomials of P_d if the critical pair can not be rewritten

// Spol returns the new set F_d

for l in [1..#P_d] do

// Run through all critical pairs of degree d

// The pair has elements (u_l, r_il) and (v_l, r_jl)

u_l := P_d[l][2];

r_il := P_d[l][3];

v_l := P_d[l][4];

r_jl := P_d[l][5];

// printf "Candidate Spol=(%o, %o, %o)\n", u_l*r_il[1], r_il[2], u_l*r_il[3] - v_l*r_jl[3];

// Test if the elements in the critical pair can not be rewritten by previous rules in r[i]

if (not RewrittenQ(u_l, r_il, r, i))

and (not RewrittenQ(v_l, r_jl, r, i)) then

N := N + 1;

// Create the rule corresponding to the new S-polynomial

r_N := [* u_l*r_il[1] ,

r_il[2],

u_l*r_il[3] - v_l*r_jl[3] *];

// We add the rules to r after the ReductionF5 procedure in the main-loop and not in Spol

// The list-to-be-reduced is updated with the rule corresponding to the new S-polynomial

F_d := F_d cat [r_N];

// printf "Add s-polynomial.\nr_N: (%o, %o, %o).\n\n", r_N[1], r_N[2], r_N[3] ;

else

// printf "Reject Critical Pair nr %o.\n\n", l;

end if;

end for;

// Sort F_d by increasing Signature

F_d := signaturebubblesort(F_d);

end procedure;

IsReducible := function(r_i0, G_iUDone, i, phi, r)

// Test if r_i0 is reducible with respect to G_iUDone

// Again, i is the current step in the for-loop of IncrementalF5

// printf "Enter IsReducible for r_i0 = (%o, %o, %o)\n", r_i0[1], r_i0[2], r_i0[3];

for j in [1..#G_iUDone] do

// Set r_j equal to the j-th element of G_iUDone

r_j := G_iUDone[j];

if IsDivisibleBy(LeadingMonomial(r_i0[3]), LeadingMonomial(r_j[3]))

then

// (a) Polynomial r_i0 satisfies the usual divisibility test for possible reductor r_j

u := LeadingTerm(r_i0[3]) div LeadingTerm(r_j[3]);

t_j := r_j[1];

// (b) Test if the new rule is normalized

if NormalForm(u * t_j, phi) eq u*t_j

// (c) Test if we can use previous computations

and not RewrittenQ(u, r_j, r, i)

// (d) Remove identical rules

and (u*t_j ne r_i0[1] or r_j[2] ne r_i0[2])

then

// All four criteria (a, b, c, d) in IsReducible are satisfied

// printf "return G_iUDone[j]: (%o, %o, %o)\n", G_iUDone[j][1], G_iUDone[j][2], G_iUDone[j][3];

return G_iUDone[j];

A.6. ALGORITHM F5 99

end if;

end if;

end for;

// print "r_i0 is irreducible";

return [* *];

end function;

TopReduction := procedure(~h_1, ~ToDo_1, r_k0, G_iUDone, i, phi, ~r, ~N)

// TopReduction reduces r_k0 with respect to G_iUDone and updates the Signature

// The new Signature depends on the reductor

// If we get a zero S-polynomial, print a warning

if r_k0[3] eq 0 then

// print "WARNING, the system is not a regular sequence: reduction to zero occurred";

h_1 := [* *];

ToDo_1 := [];

return ;

end if;

// Test if r_k0 is reducible with respect to G_iUDone and store the reductor

r_k1 := IsReducible(r_k0, G_iUDone, i, phi, r);

// If r_k0 is irreducible then the reductor is empty and we return r_k0 with leading coefficient 1

if IsEmpty(r_k1) then

h_1 := [* r_k0[1], r_k0[2], r_k0[3] div LeadingCoefficient(r_k0[3]) *];

ToDo_1 := [];

return ;

else

// A reductor exists in this case

u := LeadingTerm(r_k0[3]) div LeadingTerm(r_k1[3]);

// Compare the Signatures S(r_k0) and S(r_k1).

if (r_k1[2] gt r_k0[2]) or ((r_k1[2] eq r_k0[2]) and u*r_k1[1] lt r_k0[1])

then

// In this case the signature of the reductor is smaller

// print "The signature of u*r_k1 is smaller ";

// Compute the reduction

r_k0[3] := r_k0[3]-u*r_k1[3];

h_1 := [* *];

if r_k0[3] eq 0 then

// print "Reductor r_k1 cancels r_k0, so return an empty set";

ToDo_1 := [];

return;

else

// Return the new rule to test whether it is again reducible

// printf "return r_k0=(%o, %o, %o)\n", r_k0[1], r_k0[2], r_k0[3];

ToDo_1 := [r_k0];

return;

end if;

else

// The Signature of the r_k0 is smaller than that of the reductor

// This means that we use the Signature of the reductor

// print "The Signature of r_k0 is smaller ";

N := N+1;

r_N := [* u*r_k1[1], r_k1[2], u*r_k1[3]-r_k0[3] *];

// In the description of the algorithm, the author adds the rules at this point

// The rules are added after the Reduction step in the main loop of AlgorithmF5

// This means we do not add the rules during the reduction

// Return the new rule r_N

// The article suggests to return r_k0 also but it will have the same reductor

// printf "Return r_N=(%o, %o, %o)\n", r_N[1], r_N[2], r_N[3];

// print "";

h_1 := [* *];

ToDo_1 := [r_N]; // removed r_k0 from this list.

return ;

end if;

end if;

end procedure;

ReductionF5 := procedure(~R_d, ToDo, G_i, i, phi, ~r, ~N);

// Reduce the polynomials in ToDo with respect to the polynomials in G_i

// Return the set of rules corresponding to the reduced polynomials, R_d

100 A. ALGORITHMS WRITTEN FOR MAGMA

// The set phi corresponds to the set phi_iplus1 in the subroutine AlgorithmF5

// The integer i indicates the current step of the for-loop of IncrementalF5

while not IsEmpty(ToDo) do

// Sort the rules in ToDo on increasing Signature

ToDo := signaturebubblesort(ToDo);

// Pick the rule with the smallest Signature from ToDo

h := ToDo[1];

ToDo := Remove(ToDo, 1); // set ToDo := ToDo \ {h}

// Test if the algorithm works if we reduce very rigorously

// Modify phi temporarily, the result is that F5 usually works for larger systems than 3 variables

// If phi is not a Grbner Basis then the Normal Form is not unique

phi := phi cat [r_j[3] : r_j in (G_i cat R_d)];

// Apply subroutine TopReduction, it returns an irreducible h_1 and a sequence of reducible ToDo_1

h_1 := [* *];

ToDo_1 := [];

TopReduction(~h_1, ~ToDo_1, [*h[1], h[2], NormalForm(h[3], phi) *], G_i cat R_d, i, phi, ~r, ~N);

if not IsEmpty(h_1) then

R_d := R_d cat [h_1];

end if;

ToDo := ToDo cat ToDo_1;

end while;

end procedure;

AlgorithmF5 := procedure(i, f, ~G, ~r, ~N, ~nosp, ~dmax, ~df5)

// Compute a Grbner Basis of the polynomials in G[i+1] joined with f=f_i

// The integer i indicates the current step of the for-loop of IncrementalF5

// Initiate the first rule for polynomial f_i of the original basis

r_i := [* 1, i, f *];

r[i] := Append(r[i], r_i);

// Call the previous Grbner Basis phi_iplus1 to use in the calculation of Normal Forms

phi_iplus1 := [G[i+1][j][3] : j in [1..#G[i+1]]];

// Append the rule corresponding to the new polynomial to the previous Grbner Basis

G[i] := Append(G[i+1], r_i);

// Calculate the new critical pairs for the polynomial f_i

// The new criterion of F5 is applied in the subroutine CritPair

P := [];

for j in [1..#G[i+1]] do

CritPair(~P, r_i, G[i+1][j], i, phi_iplus1);

end for;

// Sort the critical pairs by increasing totaldegree

P := degreebubblesort(P,1);

print "Critical pairs after applying the F5 criterion :", #P;

while not IsEmpty(P) do

// Set d, the smallest totaldegree in P

d := TotalDegree(P[1][1]);

// P_d is the subset of P with lowest totaldegree d

P_d := [p : p in P | TotalDegree(p[1]) eq d];

printf "Select the %3o critical pair(s) with degree d : %o\n", #P_d, d;

// Set P:=P\P_d (remove #P_d times the first element of P)

for j in [1..#P_d] do

P := Remove(P, 1);

end for;

// Create the set of S-polynomials F corresponding to the critical pairs in P_d

F_d := [];

Spol(~F_d, P_d, ~N, ~r, i);

nosp := nosp + #F_d;

// Reduce the new S-polynomials with respect to the current intermediate basis G[i]

R_d := [];

ReductionF5(~R_d, F_d, G[i], i, phi_iplus1, ~r, ~N);

// The following line is to be exactly like the example in the article

// This sorting is not mentioned in the pseudocode of F5

R_d := Reverse(signaturebubblesort(R_d));

A.6. ALGORITHM F5 101

if not IsEmpty(R_d) then

print "Number of new elements in intermediate basis :", #R_d;

df5 := Max(df5, d);

print "Current largest degree of a contributing critical pair :", df5;

end if;

// Add the new rules corresponding to the reduced polynomials

for newrule in R_d do

r[i] := Append(r[i] , newrule); // Add rules

end for;

for j in [1..#R_d] do

dmax := Max(TotalDegree(R_d[j,3]), dmax);

// Create the critical pairs rising from the reduced S-polynomials

for p in [1..#G[i]] do

CritPair(~P, R_d[j], G[i][p], i, phi_iplus1);

end for;

// Append the reduced S-polynomials to the current intermediate basis G[i]

G[i] := G[i] cat [R_d[j]];

end for;

/* print "The new G[i] after adding the s-polynomials.";

for j in [1..#G[i]] do

printf "Elt. %o: (%o, %o, %o)\n", j, G[i][j][1], G[i][j][2], G[i][j][3];

end for;

print "";

*/

// Sort the critical pairs by increasing totaldegree

P := degreebubblesort(P,1);

print "Number of new critical pairs :", #P;

end while;

end procedure;

IncrementalF5 := function(F)

print "*********** F5 **************";

// print "F=",F;

N := #F;

dmax := 0;

df5 := 0;

// Initiate the set G of intermediate Grbner Bases

G := [[] : j in [1..N]];

// Reset the simplification rules

r := [[] : j in [1..N]];

r[N] := [[* 1, N, F[N] *]];

// The intermediate Grbner Basis elements are stored as rules

G[N] := r[N];

// Count the total number of s-polynomials created

nosp := 0;

for i in [N-1..1 by -1] do

print "Start procedure AlgorithmF5, polynomials to go i :",i ;

AlgorithmF5(i, F[i], ~G, ~r, ~N, ~nosp, ~dmax, ~df5);

print "Number of S-polys created :", nosp;

print "Current maximal degree of S-polynomial :", dmax;

print "";

end for;

gbasis := [G[1][j][3] : j in [1..#G[1]]];

mtotdeg := Max([TotalDegree(g) : g in gbasis]);

print "*** Summary ***";

print "Total number of S-polys created :", nosp;

print "Maximal degree of S-polynomial :", dmax;

print "Maximal degree of a contributing critical pair :", df5;

print "Maximal degree in basis :", mtotdeg;

print "Number of basis elements :", #gbasis;

isgb := IsGroebner(gbasis);

print "Is G a Groebner Basis :", isgb;

return gbasis, isgb, nosp, dmax, df5;

end function;

// Create an alias F5 for the official name IncrementalF5 as it is written in the article.

F5 := function(F)

102 A. ALGORITHMS WRITTEN FOR MAGMA

gbasis, IsGB, nosp, dmax, df5 := IncrementalF5(F);

return gbasis, IsGB, nosp, dmax, df5;

end function;

A.7. XL

/*

Start 21-6-2004, the XL algorithm.

XL(F,D) tries to find univariate polynomials up to degree D.

Process data, like the solutions, reduced intermediate basis, d_xl and original equations with the partial

solution substituted, is returned.

*/

// Set the outputprecision of the print statement to a maximum of 5 significant digits

AssertAttribute(FldPr, "OutputPrecision", 5);

XL := function(F, D)

printf "*********** XL, D=%o **************\n", D;

// Initialization

F := [f : f in F | f ne 0];

sd := Min([TotalDegree(f) : f in F]);

// Grab the polynomial ring in which the elements of F lie

P:=Parent(F[1]);

r:=Rank(P);

// Grab the current memory usage

m1 := GetMemoryUsage();

// Test if D is assigned a correct value

if D lt sd then

print "Choose a larger D";

return [], F, false, #F, #F, 0, F;

end if;

F_D := [[] : i in [1..#F]];

// This for-loop generates all monomials up to degree D-d for a degree d element of f

// and includes all monomial multiplications of the form x^\alpha f in F_D[f]

for f in [1..#F] do

d := TotalDegree(F[f]);

// Similar to F4, we use the function addwithcarry to create all monomials up to degree D-d

M := [P ! 1];

pos := 1;

maxvector := [D-d : i in [1..r]];

tempvector := [0 : i in [1..r]];

while tempvector ne maxvector and pos le r do

tempvector, pos := addwithcarry(tempvector, maxvector, pos);

if &+tempvector le D-d then

Include(~M, &*[(P.i)^tempvector[i] : i in [1..r]]);

end if;

end while;

for m in M do

Include(~F_D[f], F[f]*m);

end for;

end for;

// All polynomials of the form x^alpha f_i up to degree D are put together in one sequence F_XL

F_XL := &cat[F_D[f] : f in [1..#F]];

// Create the ordered support of F_XL

sup := Setseq(&join{Seqset(Monomials(i)) : i in F_XL});

sup := ChangeUniverse(sup, ChangeOrder(P, "lex"));

sup := Reverse(Sort(sup));

// Store the number of univariate monomials in the support

univsup := [s : s in sup | IsUnivariate(s)];

noum := #univsup;

// Create the matrix corresponding to set of polynomials F_XL

Fmatrix := Matrix(BaseRing(P), [polytovector(i, sup) : i in F_XL]);

EFtime := Cputime();

Fmatrix := EchelonForm(Fmatrix);

// If the matrix fits on the screen, print it

if #sup lt 25 then

print "Ordered support:";

print sup;

print "Reduced matrix:";

A.7. XL 103

print Fmatrix;

end if;

time_echform := Cputime(EFtime);

print "Time of EchelonForm(Fmatrix) (s) :", time_echform;

// Convert rows to polynomials

Fmatrix := RowSequence(Fmatrix);

nrows := #Fmatrix;

Fred := [vectortopoly(Fmatrix[i], sup) : i in [1..nrows]];

Fred := [f : f in Fred | f ne 0];

// Create the set of univariate polynomiaals in Fred

UP := [f : f in Fred | IsUnivariate(f)];

// Create the set of univariate polynomials with a single root from UP

R := [f : f in UP | #Roots(UnivariatePolynomial(f)) eq 1];

// Collect the (intermediate) solutions from R, represented in a substitution sequence

subst := {};

for r in R do

a, b, var := IsUnivariate(r);

root := Roots(UnivariatePolynomial(r))[1,1];

Include(~subst, [Integers() | var, root]);

end for;

subst := Setseq(subst);

mem := (GetMemoryUsage() - m1) div 1000;

isgb := IsGroebner(Fred);

print "";

print "*** Summary ***";

print "Memory size of process (kb) :", mem;

printf "Size of XL matrix : %o rows and %3o columns\n", #F_XL, #sup;

printf "Size of row reduced XL matrix : %o rows and %3o columns\n", #Fred, #sup;

print "Number of univariate polynomials :", #UP;

print "Number of single root polynomials :", #R;

print "Number of univariate monomials :", noum;

print "Number of variables solved :", #subst;

print "Is the system a Groebner Basis :", isgb;

print "Substitution sequence [[var,root]] :";

print subst;

// Substitute the solved variables into the original system

for f in [1..#F] do

for s in subst do

F[f] := Evaluate(F[f], s[1], s[2]);

end for;

end for;

F := [f : f in F | f ne 0];

return subst, Fred, isgb, #F_XL, #Fred, #sup, F, time_echform;

end function;

APPENDIX B

Data corresponding to Examples 5.2 and 5.11

The set F that is the result of the HFE encryption in Example 5.2 represented
as Magma code.
P<[x]>:=PolynomialRing(GF(2),7,"lex");

F:=

[

x[1]*x[2] + x[1]*x[5] + x[1]*x[6] + x[2]^2 + x[2]*x[4] + x[2]*x[5] +

x[2]*x[6] + x[3]^2 + x[3]*x[4] + x[4]^2 + x[4]*x[5] + x[5]^2 + x[6]^2 +

x[6]*x[7] + x[6] + x[7],

x[1]^2 + x[1]*x[2] + x[1]*x[3] + x[1]*x[4] + x[1]*x[5] + x[1]*x[7] + x[1] +

x[2]*x[3] + x[2]*x[5] + x[2]*x[6] + x[2]*x[7] + x[3]*x[5] + x[3]*x[7] +

x[3] + x[4]^2 + x[4]*x[5] + x[4]*x[7] + x[5]*x[6] + x[5]*x[7] + x[5] +

x[6]*x[7] + 1,

x[1]*x[2] + x[1]*x[3] + x[1]*x[4] + x[1]*x[6] + x[1] + x[2]*x[4] + x[2]*x[7]

+ x[3]^2 + x[3]*x[6] + x[3]*x[7] + x[3] + x[4]^2 + x[4]*x[5] + x[4]*x[7]

+ x[4] + x[5]*x[7] + x[5] + x[6]*x[7] + x[6] + x[7],

x[1]^2 + x[1]*x[3] + x[1]*x[4] + x[1]*x[5] + x[1]*x[6] + x[1]*x[7] + x[1] +

x[2]^2 + x[2]*x[5] + x[2]*x[7] + x[2] + x[3]*x[4] + x[3]*x[5] + x[3] +

x[4]*x[5] + x[4]*x[7] + x[4] + x[5] + x[6]*x[7] + x[7]^2 + x[7] + 1,

x[1]^2 + x[1]*x[5] + x[2]*x[3] + x[2]*x[4] + x[2] + x[3]*x[4] + x[3]*x[5] +

x[3] + x[4]*x[5] + x[4]*x[6] + x[4]*x[7] + x[5]^2 + x[5]*x[6] + x[5] +

x[6]*x[7] + x[6] + x[7]^2 + x[7],

x[1]^2 + x[1]*x[2] + x[1] + x[2]*x[5] + x[2] + x[4]*x[6] + x[4] + x[5]^2 +

x[5]*x[6] + x[5]*x[7] + x[5] + x[6]^2 + x[6]*x[7] + x[6] + x[7] + 1,

x[1]*x[3] + x[1]*x[4] + x[1]*x[5] + x[1]*x[7] + x[2]*x[3] + x[2]*x[5] +

x[2]*x[6] + x[2]*x[7] + x[2] + x[3]*x[4] + x[4]^2 + x[4]*x[5] + x[5]^2 +

x[5]*x[7] + x[5] + x[6]^2 + x[6] + x[7]^2,

x[1]^2 + x[1],

x[2]^2 + x[2],

x[3]^2 + x[3],

x[4]^2 + x[4],

x[5]^2 + x[5],

x[6]^2 + x[6],

x[7]^2 + x[7]

];

Applying XL incrementally to the following set leads to a lower dmin and dXL

than predicted by the analysis based on Hilbert series. This set corresponds to
Example 5.11.
P<[x]> := PolynomialRing(GF(2), 9, "lex");

F:=

[

x[1]^2 + x[1]*x[2] + x[1]*x[4] + x[1]*x[5] + x[1] + x[2]*x[5] + x[2]*x[6] +

x[2]*x[8] + x[2]*x[9] + x[2] + x[3]^2 + x[3]*x[6] + x[3]*x[7] +

x[3]*x[8] + x[3]*x[9] + x[3] + x[4]^2 + x[4]*x[5] + x[4]*x[7] +

x[4]*x[8] + x[4]*x[9] + x[5]^2 + x[5]*x[8] + x[5]*x[9] + x[5] + x[6]^2 +

x[6]*x[9] + x[6] + x[8]*x[9] + x[9]^2 + x[9] + 1,

105

106 B. DATA CORRESPONDING TO EXAMPLES ?? AND ??

x[1]^2 + x[1]*x[2] + x[1]*x[3] + x[1]*x[4] + x[1]*x[5] + x[1]*x[6] +

x[1]*x[8] + x[1]*x[9] + x[2]*x[3] + x[2]*x[4] + x[2]*x[9] + x[3]^2 +

x[3]*x[4] + x[3]*x[7] + x[3]*x[9] + x[4]^2 + x[4]*x[6] + x[4]*x[9] +

x[4] + x[5]^2 + x[5]*x[7] + x[5]*x[9] + x[6]^2 + x[6]*x[7] + x[6]*x[8] +

x[6]*x[9] + x[6] + x[8]*x[9] + x[8] + x[9]^2,

x[1]*x[2] + x[1]*x[4] + x[1]*x[5] + x[1]*x[6] + x[2]^2 + x[2]*x[3] +

x[2]*x[5] + x[2]*x[7] + x[2]*x[9] + x[2] + x[3]*x[5] + x[3]*x[6] +

x[3]*x[8] + x[3]*x[9] + x[4]^2 + x[4]*x[5] + x[4]*x[7] + x[4]*x[9] +

x[4] + x[5]*x[8] + x[6]^2 + x[6]*x[8] + x[6]*x[9] + x[6] + x[7]*x[9] +

x[7] + x[9] + 1,

x[1]*x[2] + x[1]*x[4] + x[1]*x[6] + x[1]*x[7] + x[1]*x[9] + x[2]*x[3] +

x[2]*x[4] + x[2]*x[6] + x[2]*x[7] + x[2]*x[9] + x[2] + x[3]*x[5] +

x[3]*x[7] + x[3]*x[8] + x[4]*x[7] + x[4] + x[5]*x[7] + x[5]*x[8] + x[5]

+ x[6]^2 + x[6]*x[8] + x[6]*x[9] + x[6] + x[7]^2 + x[7]*x[8] + x[7]*x[9]

+ x[8]^2 + x[8]*x[9] + x[8] + x[9],

x[1]^2 + x[1]*x[6] + x[1]*x[7] + x[1]*x[8] + x[2]*x[4] + x[2]*x[5] +

x[2]*x[9] + x[3]^2 + x[3]*x[4] + x[3]*x[5] + x[3] + x[4]*x[7] +

x[5]*x[7] + x[5]*x[9] + x[5] + x[6]*x[7] + x[6]*x[8] + x[7]*x[8] +

x[7]*x[9] + x[7] + x[8]^2 + x[8]*x[9] + x[8] + x[9]^2,

x[1]^2 + x[1]*x[5] + x[1]*x[8] + x[1]*x[9] + x[1] + x[2]*x[4] + x[2]*x[9] +

x[2] + x[3]*x[4] + x[3]*x[6] + x[3]*x[8] + x[3]*x[9] + x[3] + x[4]*x[7]

+ x[4]*x[8] + x[4]*x[9] + x[5]*x[6] + x[5]*x[8] + x[5]*x[9] + x[6]*x[8]

+ x[6]*x[9] + x[6] + x[7]^2 + x[7]*x[8] + x[7]*x[9] + x[8]*x[9],

x[1]^2 + x[1]*x[2] + x[1]*x[4] + x[1]*x[5] + x[1]*x[6] + x[1]*x[7] +

x[1]*x[9] + x[1] + x[2]*x[5] + x[2]*x[6] + x[2]*x[7] + x[2]*x[8] +

x[3]*x[4] + x[3]*x[5] + x[3]*x[7] + x[3] + x[4]^2 + x[4]*x[5] +

x[4]*x[6] + x[4]*x[8] + x[5] + x[6]*x[7] + x[6] + x[7]^2 + x[9]^2 +

x[9],

x[1]^2 + x[1]*x[3] + x[1]*x[4] + x[1]*x[5] + x[1]*x[6] + x[2]*x[3] +

x[2]*x[4] + x[2]*x[5] + x[2]*x[9] + x[3]*x[8] + x[3]*x[9] + x[3] +

x[4]*x[5] + x[4]*x[6] + x[4]*x[8] + x[5]^2 + x[5]*x[7] + x[5] + x[6]^2 +

x[6]*x[8] + x[7]*x[8] + x[7]*x[9] + x[7] + x[8]^2 + x[8]*x[9] + x[9]^2 +

x[9] + 1,

x[1]*x[2] + x[1]*x[6] + x[1]*x[8] + x[2]^2 + x[2]*x[3] + x[2]*x[6] +

x[2]*x[8] + x[2] + x[3]^2 + x[3]*x[5] + x[3]*x[7] + x[3]*x[8] +

x[3]*x[9] + x[3] + x[4]^2 + x[4]*x[5] + x[4]*x[8] + x[5]^2 + x[5]*x[8] +

x[5] + x[6]^2 + x[6]*x[7] + x[6]*x[8] + x[6]*x[9] + x[6] + x[7]^2 +

x[7]*x[9] + x[8]^2 + x[8]*x[9] + x[9]^2,

x[1]^2 + x[1],

x[2]^2 + x[2],

x[3]^2 + x[3],

x[4]^2 + x[4],

x[5]^2 + x[5],

x[6]^2 + x[6],

x[7]^2 + x[7],

x[8]^2 + x[8],

x[9]^2 + x[9]

];

Bibliography

[Arm02] F. Armknecht, A Linearization Attack on the Bluetooth Key Stream Generator, IACR

eprint server, http://www.iacr.org, December 2002.
[AT96] G. Attardi and C. Traverso, Strategy-Accurate Parallel Buchberger Algorithms, Jour-

nal of Symbolic Computation 21 (1996), 411–425.

[BCP97] W. Bosma, J. Cannon, and C. Playoust, The Magma Algebra System I: The User
Language, Journal of Symbolic Computation 24 (1997), 235–265.

[BMMT94] E. Becker, M.G. Marinari, T. Mora, and C. Traverso, The shape of the Shape Lemma,

Proceedings of the International Conference on Symbolic and Algebraic Computation,
ACM Press, 1994, pp. 129–133.

[Buc65] B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassen-
ringes nach einem nulldimensionalen Polynomideal, PhD thesis, Innsbruck, 1965.

[Buc85] , Multidimensional Systems Theory, ch. Gröner bases: an algorithmic method

in polynomial ideal theory, pp. 184–232, D. Reidel Publishing Company, 1985.
[BW93] T. Becker and V. Weispfenning, Gröbner Bases, a Computational Approach to Com-

mutative Algebra, Graduate Texts in Mathematics, Springer, 1993.

[CKM97] S. Collart, M. Kalkbrener, and D. Mall, Converting Bases with the Gröbner Walk,
Journal of Symbolic Computation 24 (1997), no. 3, 465–469.

[CKPS00] N. Courtois, A. Klimov, J. Patarin, and A. Shamir, Efficient Algorithms for Solving

Overdefined Systems of Multivariate Polynomial Equations, Advances in Cryptology
- Eurocrypt 2000 1807 (2000), 392–407.

[CKR04] M. Caboara, M. Kreuzer, and L. Robbiano, Efficiently Computing Minimal Sets of

Critical Pairs, Preprint submitted to Journal of Symbolic Computation (2004).
[CLO96] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties and Algorithms, Second Edition,

Springer-Verlag, 1996.
[CLO98] , Using Algebraic Geometry, Springer-Verlag, 1998.

[Coo71] S.A. Cook, The Complexity of Theorem Proving Procedures, Conference Record of

Third Annual ACM Symposium on Theory of Computation (1971), no. 3-5, 151–158.
[Cou03] N. Courtois, Higher Order Correlation Attacks, XL algorithm and Cryptanalysis of

Toyocrypt, Proceedings of the International Conference on Information Security and

Cryptography, Lecture Notes in Computer Science, no. 2587, Springer, 2003, pp. 182–
199.

[CP02] N. Courtois and T. Pieprzyk, Cryptanalysis of Block Ciphers with Overdefined Sys-

tems of Equations, IACR eprint server, http://www.iacr.org, March 2002.
[CW90] D. Coppersmit and S. Winograd, Matrix Multiplication via Arithmetic Programming,

Journal of Symbolic Computation 9 (1990), 251–280.
[Die04] C. Diem, An analysis of the XL-algorithm, Private communication, April 2004.
[DR99] J. Daemen and V. Rijmen, AES Proposal: Rijndael (Version 2), NIST AES website,

http://csrc.nist.gov/encryption/aes, 1999.
[FA04] J.-C. Faugère and G. Ars, Comparison of XL and Gröbner basis algorithms over

Finite Fields, Tech. Report 5251, INRIA, July 2004.
[Fau99] J.-C. Faugère, A New Efficient Algorithm for Computing Gröbner Bases (F4), Jour-

nal of Pure and Applied Algebra 139 (1999), 61–88.
[Fau02] , A New Efficient Algorithm for Computing Gröbner Basis without Reduc-

tion to Zero (F5), Proceedings of the 2002 international symposium on Symbolic
and algebraic computation, ACM Special Interest Group on Symbolic and Algebraic
Manipulation, 2002.

107

108 BIBLIOGRAPHY

[FGLM93] J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora, Efficient Computation of Zero-

dimensional Gröbner Bases by Change of Ordering, Journal of Symbolic Computation

16 (1993), 329–344.
[FJ03] J.-C. Faugère and A. Joux, Algebraic Cryptanalysis of Hidden Field Equation (HFE)

Cryptosystems Using Gröbner Bases, Advances in Cryptology - Crypto 2003 2729

(2003), 44–60.
[Fro85] R. Froberg, An inequality for Hilbert series of graded algebras, Math. Scand. 56

(1985), 117–144.

[GG99] J.v.z. Gathen and J. Gerhard, Modern Computer Algebra, Cambridge University
Press, 1999.

[GJ79] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness, W.H. Freeman, New York, 1979.
[GM88] R. Gebauer and H.M. Möller, On an Installation of Buchberger’s Algorithm, Journal

of Symbolic Computation 6 (1988), 275–286.
[HPS93] J. H̊astad, S. Philips, and S. Safra, A Well-Characterized Approximation Problem,

Information Processing Letters (1993), no. 47:6, 301–305.

[Kob97] N. Koblitz, Algebraic Aspects of Cryptography, Algorithms and Computation in Math-
ematics, vol. 3, Springer, 1997.

[KR00] M. Kreuzer and L. Robbiano, Computational Commutative Algebra 1, Springer, 2000.

[KR04] , Computational Commutative Algebra 2, To Appear, 2004, draft May.
[KS99] A. Kipnis and A. Shamir, Cryptanalysis of the HFE Public Key Cryptosystem by

Relinearization, Advances in Cryptology - Crypto 1999 1666 (1999), 19–30.

[Laz83] D. Lazard, Gröbner Bases, Gaussian Elimination and Resolution of Systems of Al-
gebraic Equations, Proc. Eurocal ’83 162 (1983), 146–157.

[LRK79] J.K. Lenstra and A.H.G. Rinnooy Kan, Computational Complexity of Discrete Opti-
mization Problems, Annals of Discrete Mathematics, vol. 4, North-Holland Publishing

Company, 1979.

[MFS03] Bardet. M., J.-C. Faugère, and B. Salvy, Complexity of Gröbner basis computation for
Semi-regular Overdetermined sequences over F2 with solutions in F2, Tech. Report

5049, INRIA, 2003.

[MI88] T. Matsumoto and H. Imai, Public Quadratic Polynomial-Tuples for Efficient
Signature-Verification and Message-Encryption, Advances in Cryptology - Eurocrypt

’88 330 (1988), 419–453.

[Mis93] B. Mishra, Algorithmic Algebra, Texts and Monographs in Computer Science,
Springer-Verlag, 1993.

[Moh01] T. Moh, On the Method of “XL” and its Inefficiency to TTM, IACR eprint server,

http://www.iacr.org, June 2001.
[MR02a] S. Murphy and M.J.B. Robshaw, Comments on the Security of the AES and the XSL

Technique, http://www.isg.rhul.ac.uk/ sean/Xslbes8.ps, September 2002.
[MR02b] , Essential Algebraic Structure within the AES, Advances in Cryptology -

Crypto 2002 2442 (2002), 1–16.

[Nat01] National Institute of Standards and Technology, Advanced Encryption Standard, FIPS
197, 26 November 2001.

[Pat96a] J. Patarin, HFE first challenge, http://www.minrank.org/challenge1.txt, 1996.

[Pat96b] , Hidden Field Equations (HFE) and Isomorphism of Polynomials (IP): Two
New Families of Asymmetric Algorithms, Advances in Cryptology - Eurocrypt ’96

1070 (1996), 33–48.

[Sha49] C.E. Shannon, Communication Theory of Secrecy Systems, Bell System Technical
Journal (1949), no. 28.

[SKI04] M. Sugita, M. Kawazoe, and H. Imai, Relation between XL algorithm and Gröbner
Bases Algorithms, IACR eprint server, http://www.iacr.org, May 2004.

[Ste04] A. Steel, Allan Steel’s Gröbner Basis timings page,

http://magma.maths.usyd.edu.au/users/allan/gb/, May 2004.
[Tra97] C. Traverso, Hilbert Functions and the Buchberger Algorithm, Journal of Symbolic

Computation 22 (1997), 355–376.

[Val96] G. Valla, Six Lectures on Commutative Algebra, Progress in Mathematics, vol. 166,
ch. Problems and Results on Hilbert Polynomials of Graded Algebras, Birkhäuser

Verlag, Basel, 1996.

Index

D-Gröbner Basis, 56

Sij , 63

d-Gröbner Basis, 56

dF4, 62

dF5, 44

dXL, 76

dmin, 49

t-representation, 26

3-Satisfiability, 12

admissible, 69

admissible ordering, 20

AES, 9, 44

affine Hilbert function, 77

affine Hilbert polynomial, 84

affine space, 18

affine variety, 18

Ascending Chain Condition, 24

basis, 19

BES, 45

Buchberger Algorithm, 28

byte, 37

certificate, 11

clauses, 12

coefficient, 18

conjugacy property, 46

Conjunctive Normal Form, 12

criteria, 29

critical pairs, 26

critical syzygies, 64

deg(f), 18

degree of regularity, 84

degree of the critical pair, 26

DES, 44

Dickson’s Lemma, 23

Division Algorithm, 22

elimination ideal, 30

F4, 60

F5 criterion, 69

field equations, 31

Finiteness Criterion, 30

FXL, 50

Gebauer and Möller Installation, 66

generic, 81

generic system of forms, 81

Gröbner Basis, 24

Graded Lex Order, 20

Graded Reverse Lex Order, 21

grevlex, 21

HFE, 40

HFE polynomial, 40

Hilbert function, 78

Hilbert series, 79

Hilbert’s Nullstellensatz, 31

Homogeneous Buchberger Algorithm, 55

homogeneous ideal, 55

homogeneous syzygy, 64

homogenization, 78

homogenous component, 55

ideal, 19

Ideal Membership Problem, 17

ideal of leading terms, 22

index, 69

index of regularity, 83, 84

intermediate basis, 29

leading coefficient, 21

leading module term, 69

leading monomial, 21

leading term, 21

least common multiple, 25

lex, 20

Lexicographic Order, 20

Linearization, 47

literals, 12

matrix representation, 58

maximal rank conjecture, 82

monic, 21

monomial, 17

monomial ideal, 22

monomial ideal of leading terms, 23

109

110 INDEX

monomial ordering, 20

multidegree, 21

non-zerodivisor, 68
Normal Form, 29

normal selection strategy, 57
NP, 11

NP-complete, 12

NP-hard, 12

perfect field, 30

polynomial, 17

polynomial ring, 17
proper, 68

reduced Gröbner Basis, 30
reduces to zero modulo G, 29

reductor, 59

regular sequence, 68
Relinearization, 47

remainder, 21
Rijndael polynomial, 35

S-pair criterion, 26

S-polynomial, 25
Satisfiability, 12

scalar multiplication, 63

Seidenberg’s Lemma, 31
selection strategy, 29

Shape Lemma, 32
signature, 69

standard basis, 24

standard representation, 26
support, 18

Sylvester matrix, 54

Symbolic Preprocessing, 59
syzygy, 63

Taylor basis, 65
term, 18

total degree, 17, 18, 21

truncated Gröbner Basis, 56

vector conjugate, 45

vector conjugate mapping, 46
vector space dimension, 77

well-ordering, 20

XL, 48

XSL, 50

zero-dimensional, 30

