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Abstract

In recent years, methods based on lattice reduction have been used re-
peatedly for the cryptanalytic attack of various systems. Even if they do
not rest on highly sophisticated theories, these methods may look a bit
intricate to the practically oriented cryptographers, both from the mathe-
matical and the algorithmic point of view. The aim of the present paper is
to explain what can be achieved by lattice reduction algorithms, even with-
out understanding of the actual mechanisms involved. Two examples are
given, one of them being the attack devised by the second named author
against Knuth’s truncated linear congruential generator, which has been
announced a few years ago and appears here for the first time in journal
version.

1 Introduction

1.1 Historical background
A lattice is a discrete subgroup of R" or equivalently the set L

Abi+ o + Ab,

of all integral linear combination of a given set of n-dimensional vectors by, - - -, b,,.
If these vectors are independent then (by,---,b,) is said to be a basis of L and p
is its dimension.

From the mathematical point of view, the history of lattice reduction goes
back to the theory of quadratic forms developed by Lagrange, Gauss, Hermite,
Korkine-Zolotareff and others (see [Lag73, Gau0l, Her50, KZ73]) and to Minkovski’s
geometry of numbers ([Minl0]). With the advent of algorithmic number theory,



the subject had a revival around 1980, when Lovasz found a polynomial-time
algorithm that computes a so-called reduced basis of a lattice. Actually, a reduc-
tion algorithm of the same flavor had already been included in Lenstra’s work on
integer programming (cf. [Len83], circulated around 1979) and the lattice reduc-
tion algorithm reached a final form in the paper [LLL82] of Lenstra, Lenstra and
Lovasz, from which the name LLL algorithm comes. Further refinements of the
LLL algorithm were proposed by Schnorr ([Sch87, Sch88]).

The relevance of those algorithms to cryptography was immediately under-
stood: in April 1982, Shamir ([Sha82]) found a polynomial time algorithm break-
ing the Merkle-Hellman public key cryptosystem ([MH78]) based on the knapsack
problem, that had been basically the unique alternative to RSA. Shamir used
Lenstra’s integer programming algorithm but, the same year, Adleman ([AdI83])
extended Shamir’s work by treating the cryptographic problem as a lattice prob-
lem rather than a linear programming problem. Further improvements of these
methods were obtained by Lagarias and Odlyzko ([LLO83]), by Brickell ([Bri85])
and, more recently by Coster, La Macchia, Odlyzko, Schnorr and the authors
([CILT92]).

Lattice reduction has also been applied successfully in various other cryp-
tographic contexts: against a version of Blum’s protocol for exchanging secrets
([FHK*88]), against truncated linear congruential generators ([FHK*88, Ste87]),
against cryptosystems based on rational numbers ([ST90]) or modular knapsacks
([JS91, CJS91]). Despite the available literature, papers are still submitted (and
sometimes published) that describe cryptographic protocols that can be broken,
via lattice reduction techniques, almost by inspection. This fact, which may
be due to the apparent technicality of the subject, drove us to try to write a
paper that explains the power of lattice reduction in cryptography, without re-
quiring any understanding of the actual mechanisms involved in the algorithms.
Of course, this was also an opportunity to publish, in final form, results that had

been announced in [Ste87] and [GJ94].

1.2 Functional description of lattice reduction algorithms

As was already mentioned, a lattice L consists of all integral linear combination
Ahy + -+ b,

of a given set of n-dimensional vectors by,---,b,. From the algorithmic point
of view, we are interested into the case where all b;’s have integer coordinates.
In this case, the lattice L can be represented by a very simple data structure
by considering the matrix By whose columns are the coordinates of the vectors
by, -, b,. Lattice reduction algorithms perform the following very simple opera-
tions:

i) exchanging two columns of By,



ii) adding up to a given column an integer multiple of another one

iii) deleting zero columns

What is not simple is the precise way the sequence of above transformations is
chosen. We will simply mention that the algorithm tries:

i) to have the shortest columns ahead

ii) to make the columns mutually “as orthogonal as possible”

Ideally, we would like to come out with the first column of the matrix con-
sisting of the coordinates of a shortest non zero vector of L and with “almost”
orthogonal columns. Unfortunately, this is not the case and we note that no
efficient algorithm is known for finding the shortest non-zero vector of L. This is
actually a fundamental problem which lies at the heart of the solution of many
problems in number theory. Still, from the output of the algorithm, it is possible
to build a vector whose length does not exceed the length of a shortest vector by
more than a given multiplicative constant, depending on the dimension of L as
well as on the variant of the algorithm used. It turns out that this is enough for
many applications.

1.3 Proved Performances

Let L be a lattice generated by of a set of n-dimensional vectors Let By be the
associated matrix. Denote by B the value of the matrix obtained as an output
of the LLL algorithm and by by, -, b, its column vectors. Finally let A; be the
length of a shortest non zero vector of L (in the usual euclidean sense). The
following essentially comes from [LLL82]:

Fact 1 i) by,---,b, is a basis of L
i) |by| < 207172 5 )
iii)|by| < 20=D/2 5 (A(L))Ve

In the above, A(L) denotes the determinant of L, that is the (euclidean)
volume of the ¢-dimensional parallelepiped enclosed by by,---,b,. In case the
lattice is full dimensional (which means n = ¢), this volume is the absolute
value of the determinant of B or of any other basis generating L. In the general
case, A(L) can also be computed by a simple formula which we omit. Condition
i11) means that the length of b; is not too far from what it is in the “ideal”
case, corresponding to a basis consisting of mutually orthogonal vectors of equal
length.

For the cryptanalyst, the heuristic meaning of fact 1 is that, if he only needs
a short enough vector of a lattice, LLL will do the job. Similarly, if he knows
that the (unknown) shortest vector is much smaller than the other elements of
the lattice or much smaller that the value (A(L))"?, then LLL will presumably
disclose it. There is a generalization of fact 1 which is sometimes useful: it is
related with the so-called successive minima of the lattice: the ¢th minimum is



the smallest positive value A; such that there exist ¢ linearly independent elements
of the lattice in the ball of radius A; centered at the origin.

Fact 2 |b;] < 200=1/2 ),

For the cryptanalyst, this fact amounts to saying that if ¢ (unknown) linearly
dependent vectors of the lattice are very small, the sublattice they span will be
disclosed by LLL.

Actually, the LLL algorithm consists of a family of different algorithms de-
pending on a constant -, i < 74 < 1. The case that is described above corresponds
to the value v = 3/4 and if another value of v is chosen, then the powers of two
appearing in the above facts must be replaced by the same powers of 4/(4~ — 1).

In [Sch87], Schnorr proposes a whole hierarchy of lattice reduction algorithms,
which are extensions of the LLL algorithms and which he calls blockwise Korkine-
Zolotareff reductions (BKZ). What changes here is the strategy to perform the
operations on the matrix By. The extended strategy involves a search on sublat-
tices generated by blocks of columns of the original matrix. When the size of the
blocks grows, the performances of the algorithm get better and better, achieving
the situation obtained from fact 1 by replacing powers of two by powers of any
constant o > 1.

1.4 Actual performances

In all the applications, experiments show that LLL behaves much more nicely

than should be expected in view of the theory. Especially the worst-case constant
-1

K,, which appears in fact 1 as 2% seems to be much smaller in practical terms.

1.5 Implementations

The running time of the LLL algorithm is polynomial in the dimension n of the
space, the dimension ¢ of the lattice and the size of the matrix By. More pre-
cisely, if m is the maximal number of bits in the coefficients of the original matrix
By, then the running time of the standard LLL algorithm is O(ng¢®m?). Albeit
polynomial, this is not negligible and does not allow any efficient implementa-
tion. Following a suggestion made by Odlyzko and independently by Schnorr,
actual implementations of LLL reductions, including the one used by the au-
thors, substitute floating arithmetic to the rational arithmetic required by the
original specification of the algorithms. Nevertheless, this cannot be done in a
naive way as the strategy may occasionally be misled by floating point errors
and enter a loop. Fortunately, these occasional errors can be spotted and cor-
rected, at a minor cost in terms of computing time, by performing the “exact
computation”.

Of course, the running time of the LLL algorithm also depends on the value
of the constant v adopted and several heuristics can be helpful such as computing
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first with a moderate value of v and ultimately with a value close to 1. Similarly,
BKY reductions have a worse computing time than LLL. Finally, the computing
time also depends on the kind of problems one addresses.

2 Generic problems that fall under the scope of
lattice reduction

2.1 Direct use of lattice reduction

By “direct use”, we mean practical applications where the lattice comes from the
data in a natural way. This was the situation for the original attack against the
Merkle-hellman cryptosystems. We simply mention the method, firstly because
it does not involve any specific analysis besides the results stated in section 1 and
also because it did not prove useful in more recent work.

2.2 Dependence relations with coefficients of moderate
size

The search of linear dependence relations with small coefficients in a family of
numbers or vectors is probably the source of most frequent uses of lattice reduc-
tion. This general class of applications can be further divided into two cases,
ordinary relations and modular relations. We deal with the ordinary case here,
and with the modular case in the next subsection. It should be noted that we do
not cover here the problems of solving knapsacks and finding minimal polynomi-
als. We will consider them as specific problems and they will receive a detailed
treatment in subsequent subsections. Before we turn to practical matters, we
briefly discuss the question from a mathematical point of view.

2.2.1 Some combinatorial landmarks

For the cryptographer, the search for linear dependence relations with coefficients
of moderate size can occur either because he is looking for specific objects, whose
existence is known (trapdoors etc.) or for generic objects he might use for a
further analysis. The following combinatorial lemma ensures the existence of
such generic relations.

Lemma 1 Assume Vi, ..., V, is a family of vectors with integer coefficients in
the t-dimensional space, witht < n. Let M denote an upper bound for the absolute
values of all coefficients of the various V;s. There exists an integer relation



such that max |\;| < B, where B is given by

log M 4+ logn + 1

n—t

logB =1t

Remark: In the whole paper log will denote the base 2 logarithm.
Proof: Consider all possible linear combinations

with 0 < p; < B. An easy counting argument shows that the numbers of such
relations is exactly B™ and that the resulting vectors have all coordinates (strictly)
bounded by nBM. Since there are less than (2n BM)! such vectors, two distinct
relations have to compute the same value, as soon as

(2BM)' < B"
which amounts to the given relation

tlogM—l—logn—l—l

n—t

log B =

This gives
dopmVi=Y_ Vi
=1 =1

with 0 < p; < B and 0 < g} < B. The result follows by difference.

Remark: It is obvious that the shortest dependence relation (say w.r.t. the
euclidean length) can be much shorter than what is claimed in the above lemma.
We give a heuristic argument to show that our estimate is probably pessimistic.
If we consider that vectors computed by the formula

behave like random elements in the ¢-dimensional cube of size (2BM) then, by the
birthday paradox, we can see that a collision happens with constant probability
as soon as

tlog M 4+ logn + 1
log B = —
2 n—1t/2

2.2.2 Practical point of view

Given a family of integer vectors (or numbers) Vi, ..., V,, let us describe the
principle of dependence relations search. We construct the lattice given by the



columns of the following matrix:

KV KV --- KV,
1 0 0
0 1 0
0 0 1

where K is a well chosen constant.

We distinguish two cases: either we are looking for exact relations or else
for approximate relations. In the first case, K should be large enough to ensure
that the first vector of the reduced basis has zero components in its upper part
corresponding to the first ¢ coordinates, where ¢ is the dimension of the V;s. More
accurately, in view of fact 1, K should be larger than the size of the expected
linear relation multiplied by a a safety coefficient 2°/2. Thus, LLL will discover
short vectors whose upper part is guaranteed to be zero, and these vectors clearly
correspond to linear dependencies with small coefficients. The coefficients appear
as coordinates of rank ¢t + 1,---,¢ + n of the output vector.

In the case of approximate relations, we can choose K = 1. Output vectors
will be short but there is no reason why the upper part should be zero. This
clearly corresponds to approximate dependencies with small coefficients.

2.3 Modular relations

In the previous section, we explained how to disclose linear relations with mod-
erate coefficients between integer vectors. We now discuss the case of modm
numbers. The basic problem is how one can force lattice reduction to deal with
modular relations. The answer is very simple and consists in adding to the lat-
tice basis a few columns that ensure modular reduction as shown in the following
matrix:

Kvi KV, .. KV, Kml
1 0 0 0
0 1 0 0
: : .. : 0
0 0 1 0

where [ is a t-dimensional identity matrix, with ¢ the dimension of the V;s. It is
clear that the added columns force reduction of numbers modulo m.

From a practical point of view, we need to foretell whether or not the resulting
lattice will disclose the expected dependence relation. To discuss this question
and provide heuristics, we remark that the lattice includes short vectors that are
not related whatsoever with the existence of any linear relation. These vectors
can be obtained by multiplying any of the first n vectors in the initial basis
by a factor m and then by reducing upper part modm, with the help of the



extra columns. We obtain a vector whose components are all zero except one
whose value is m. Applying the above construction to all Vs, we get a family
of n vectors of size m that are mutually orthogonal. Experiments show that,
if m is too small, this family appears in sequence as the first output vectors of
a reduced basis, and thus masks any useful information about linear relations.
However, if the (euclidean) size of the expected relation is smaller than m, we can
reasonably hope that the reduction algorithm will find it. Using fact 1 above, it
is possible to give conditions that will ascertain the above heuristic observations.
Still, this is not very useful in practice and we will not pursue the matter. We
close the section, by observing that, in the special case where m = 2, we cannot
expect to disclose relations with more than 3 ones. Moreover, such relations can
usually be found faster by exhaustive search. This explains why lattice reduction
algorithms are not successful for attacking binary problems, such as finding the
shortest codeword in a linear code, or the solution of a SAT problem.

2.4 Knapsack problems

Solving knapsack problems is a subcase of searching linear relations between given
numbers. However, we treat it specifically, not only because of its historical im-
portance in cryptography but also because it is is more involved than the general
case, due to the fact the the expected relations have coefficients in {0,1}. In
cryptographic scenarios, we know that such a relation exists between the given
elements of the knapsack ay, ..., a, and the target sum s = 37" ; €;a;. Moreover
we know that the euclidean size of this relation is \/an, where a is the proportion
of ones in the relations. o may or may not be known to the cryptanalyst but, in
most practical examples it is a part of the cryptographic system itself. Further-
more « is an important parameter when trying to analyze the performances of
lattice-based attacks against knapsack problems. However, discussing the influ-
ence of « is somewhat technical and is not within the scope of this article. We
refer the interested reader to [CJLT92] or [Jou93]. In the sequel, we will consider
the most natural case and set a = 1/2.

Another parameter that is quite important in knapsack problems is the density

of the knapsack:
n
d= ———.

log,(max; a;)

This parameter is the ratio between the number of elements in the knapsack
and the number of bits in each element. This parameter determines the size of
short vectors in the lattice other than the {0, 1} solution vector. It was shown in
[LO83], that, when the density is low, then the shortest vector gives the solution
to the knapsack problem. If we use the lattice that was described above, and
if we assume that shortest lattice-vectors can be efficiently computed (even if
this is not totally accurate), then low density means d < 0.6463. In recent work

([CJL*T92]), this condition was improved to d < 0.9408. In order to reach that



bound, either one of the following lattices can be used

Kaq Kay Ka, —Ks Kay Kas Ka, Ks
n+1 -1 -1 -1
-1 n+l -1~ 1 0 1
| n ‘ 0 1 0 1/2
-1 —1 n+l -1 : : : :
1 -1 -1 n+1 0 0 ! 1/2

Before we close this section, let us warn the reader on the meaning of the
low-density attacks. The inequality d < 0.9408, provides a provable guarantee
that, from a shortest vector for a lattice computed from the problem one can,
with high probability, solve the original knapsack problem. This kind of result is
sometimes described in the setting of “oracles”: it states that, if one is granted
access to a lattice reduction oracle, i.e. to a function that returns the shortest
vector of a lattice (at no computation cost), then one can solve the low-density
knapsack problem. It does not mean at all that one cannot successfully attack
knapsack problems with a higher density: it only means that such attacks will
not follow from a theorem but only from various heuristics. From a practical
point of view, it does not make much difference.

2.5 Minimal polynomials

Finding the minimal polynomial of a real algebraic number x of degree d cor-
2 ..., 2% Since we
are working with integer lattices, we choose a large integer K and we try to find
an approximate relation between the closest integers to K, Kz, Kz?, ..., Kz

More precisely, we reduce the following lattice:

responds to searching a linear dependency between 1, z, z

K |Kz] |[K2?] | K2
10 0 - 0
0 1 0 - 0
0 0 1 0
0 0 0 1

The first vector of the reduced lattice can be written as:

€
g
a1



Since we wish to interpret ag, . .., a4 as the coefficients of the minimal polynomial
of x,i.e. we want to conclude that ag 4 a;z + asz? + -+ + agz® = 0. The most
important parameters here are K and d. If d is smaller than the degree of the
minimal polynomial of x then this technique cannot succeed. Likewise, it K is
too small, then it cannot succeed either. To see this, assume for example that x
is between 0 and 1 and apply lemma 1: this yields a linear combination of the
elements on the first row of the above matrix with coefficients bounded above by
B, where B satisfies:

log K +logd + 1

n—1

log B =

If K is small, this relation is much more likely to appear as an output to lattice
reduction algorithms than the one corresponding to the minimal polynomial.
Taking into account the heuristic remarks following lemma 1, it is safe to have
K > (max |a;])**. Hence, K should be much larger than the expected size of the
coefficients of the minimal polynomial. If d is not exactly known, for example if
we only know an upper bound on the degree of the minimal polynomial of =, then
the following trick can be applied: take the first two or three vectors appearing in
the output reduced lattice, transform them into polynomials and compute their
ged. If K was large enough the minimal polynomial of = is usually obtained.

It is very important to know that the procedure we just described can give
positive results, i.e. it can find a minimal polynomial, but cannot give negative
one.

3 Two examples

We now turn to two specific examples. As mentioned in the introduction, these
were chosen among the authors’ contributions in the area and appear here for
the first time in journal version.

3.1 Cryptanalysis of Knuth’s truncated linear congruen-
tial generators

In this section, we discuss the predictability of the sequence given by outputting
a constant proportion of the leading bits of the numbers produced by a linear
congruential generator. As is known, linear congruential generators (LCG) are
a quite popular tool to produce pseudo-random sequences. The LCG works as
follows: a modulus m is chosen as well as a multiplier a, relatively prime to m,
and an increment b. Then, from a given seed z¢, one can generate the sequence
(x;), defined by
ziy1 = (ax; + b) mod m

Knuth’s book ([Knu69]) contains a thorough discussion of these generators.
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In case all the bits of the successive x;s are announced, the sequence becomes
exactly predictable even if the modulus, the multiplier and the increment are not
known. This is a result of J. Boyar (see [Plu82]). The journal version [Boy89],
which appeared after [Ste87], extends the initial method to the case where a small
portion of the lower bits are discarded.

The idea of outputting the leading bits of each of the z;s in order to increase
the resistance of the LCG goes back to Knuth ([Knu80]). Thus, one can output,
for example, half of the bits or a smaller proportion. The predictability of the re-
sulting sequence has been investigated by Frieze, Hastad, Kannan, Lagarias and
Shamir ([FHK*88]). They showed that, provided both the modulus m and the
multiplier ¢ are known, the sequence becomes completely predictable once the
leading bits corresponding to the first few x;s have been announced. Actually,
their algorithm may fail on a set of exceptional multipliers but the proportion of
integers modm in this set is shown to be as small as O(m™¢), for some given pos-
itive constant € < 1. Of course, the parameter € is connected with the number of
observed outputs: the more observations are available, the more the algorithm is
reliable. We refer to [FHK*88] for exact statements. We note that the technique
applies equally to the case where any fixed proportion « of the bits is announced.
The mathematical analysis becomes more intricate and the proof is only carried
through for specific values of m: square-free or “almost square-free” numbers.
Again, we refer to [FHK*88] and we observe that, for practical purposes, the
mild theoretical restrictions in the proofs are not too relevant.

Our results cover the case where m and a are unknown parameters. In view of
the above, our sole task is to disclose these values. We will describe a polynomial-
time algorithm that performs this task. This algorithm includes two steps: in
the first step, our algorithm produces a polynomial P(x) of degree O(+/Togm),
with integral coefficients, such that

P(a) =0 modm

This part of the algorithm is proved, using results from [FHK*88] and similar
assumptions on m and a. In the second step, we start with a sequence of such
polynomials and we propose an algorithm that provably outputs a multiple m of
m. Based on a heuristic analysis, we then make highly plausible that m quickly
decreases to m when the number of polynomials in the sequence increases. This
is confirmed by experiments. Finally, we show how to compute a once the correct
value of m has been recovered.

3.1.1 First step of the algorithm

In order to describe both the algorithm and the underlying analysis, we need
some notations. We let v be the number of bits of the modulus m. If we output
a proportion « of bits, we can write

vy =2y + z;
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where § = 1 — «, y; consists of the leading bits of x; and z; of the trailing bits.
Our algorithm is more accurately described as a sequence of different algorithms
depending on a parameter . We let V; be the element of Z* defined by

Yit1 — Y
Yivz — Yita

=
I

Yitt — Yitt—1

Applying the techniques of section 2.2, we can find an linear relation

whose coefficients are moderate integers. More precisely, it follows from lemma 1
that such a relation exists with |\;| < B with

log(2°”) +logn +1 LoV +logn + 1

n—t n—t

logB=1t

Considering the multiplicative loss 2(*~1/2 coming from fact 1, it follows that, if
we use LLL algorithm, the euclidean length |A| of the output relation will satisfy

Al < vn2D2B
We now consider the (unknown) vectors W, defined by

Tit1 — Xy
Tito — Tit1

W, =

LTitt — Tigt—1

and we let .
U= Z AW

=1
We note that each coordinate of W; — U, is the difference z;11 — z; of two integers
between 0 and 2°” hence is < 2. From this, using the Schwarz inequality, we
get that |U] = | %, Vi— W;| is bounded above by M = /tn2°*20"=1/2 B, Taking
logarithms, we have
logt + logn n—1 av +logn + 1

s A+ +1

loe M =
8 2 n—t

We balance the two terms with largest contribution besides v by letting n =~

V2atv. We get (for fixed t):
log M = v + V2atv + 0(\/;)

12



Since v is basically log m, we finally obtain: |U| = O(m”*%), for any § > 0.

We will now proceed into showing that U is zero. We give a heuristic argument
and refer the interested reader to appendix A of this paper where we provide a
mathematical proof, based on results from [FHK*88]. We note that

Tipjp1 — Tip; = @’ (x40 — ;) mod m

From this it follows that all vectors W; belong to the lattice L(a) generated by
the columns of the following matrix

1 0 0
a m 0
a2 0 m - 0
a=t 0 0 - om

It is easily seen that the determinant of this lattice is m!~!, hence the expected
size of short vectors is around m' 7. Since U belongs to L(a) and is of size
O(mP*%), for any § > 0, U is unusually short as soon as 3 < %, which means
o > % Such a vector has to be zero.

Now that we know that U/ = 0, we notice that
Z AW = (21 — 20) Z ;@' mod m
i=1 i=1
As soon as x; — ¥ is prime to m, we get that the polynomial P(x) = 3 \;a'
vanishes at ¢ modulo m. This is precisely what we wanted from the first step.

Again we ignore bad luck: in appendix B, we prove that exceptional values for
1 — xg appear with negligible probability.

3.1.2 Second step of the algorithm

It we apply part 1 of our algorithm several times, we come out with a sequence
P, P
of polynomials of degree n, each of these vanishing at @ modulo m. Now, if we

identify polynomials of degree n with elements of Z"*!, we see that the polyno-
mials that vanish at @ modulo m form a lattice I generated by the sequence

Qi(:z:):xi—ai 1<i<n
and by the constant polynomial m. This lattice is generated by the columns of
the following matrix

m —a —a® —a”
0 1 0 0
0 0 1 0
0 0 0 1



The determinant of the lattice is m. Now, if the P;s generate the lattice, then
one can apply lattice reduction, output a basis of the lattice and compute the
determinant. Based on experiments, we claim that such an algorithm actually
discloses m. Unfortunately, we cannot prove this fact mathematically, but, as
already observed all along the paper, the lack of proof is only a minor nuisance
for the cryptanalyst. In place, we offer heuristic arguments that should convince
the reader that

e the dimension on the subspace spanned by the FP;s very quickly increases
ton+1

e once a full dimensional lattice has been reached, the determinant of the
lattice generated by the P;s, which is, a priori, a multiple m of m, very
quickly decreases to m.

We first justify the first statement: recall that the output of the first part of
the algorithm provides an actual relation

> Ail@ipr — @)

(as opposed to a relation modulo m). If the successive relations found did not
span the entire space, the vectors W;s would live in a proper subspace and hence,
there would exist at least one non-trivial linear relation between their components
which holds truly (and not only modulo m). Such a relation would, in turn,
provide a fixed linear recurrence relation satisfied by the sequence (x;). But the
behavior of the sequences defined by linear recurrence relations is well known:
except under exceptional circumstances they quickly tend over to zero or infinity
and therefore cannot consist of integers modm.

We now turn to the second statement. Remember that the coefficients of each
output polynomial P; are bounded above by B, with

atlogm
log B = \/T + o(y/log mu)

By Hadamard inequality, it follows that the determinant m of the lattice spanned
by n+ 1 linearly independent P;s is at most (v/n + 1B)"*!. As n is equivalent to
V2atlogm, this bound is 2¢tlegmtollogm) 5 o mattol)  Now, if we assume that
each extra polynomial F; is somehow uncorrelated to the previous ones, then, with
probability m/m, it is not a member of the lattice generated by these previous
polynomials, hence, when added, it decreases the determinant of the resulting
lattice by some multiplicative factor. Thus, it should not take long to reach m.
In appendix C, using the heuristic hypothesis that the output polynomials are
random element of L with coefficients bounded by B, we bound the number of
polynomials needed by O(atlog m).
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We finally say a word on recovering a from m. We twist the lattice L by
multiplying all coefficients of degree > 2 by a large constant K and we apply
lattice reduction. If K is large enough (say K > m2%/?), then, by fact 2, it follows
that the sublattice of L generated by polynomials m and = — a will be disclosed:
this is because the second minimum of L is of size m any any polynomial of the
lattice with degree > 2 exceeds this size by a factor > 2%/2. By linear algebra,
one can find an element A(x) of the sublattice with leading coefficient one; then
a is exactly A(0) mod m.

We close the section by various remarks.

Remarks.

1) As was noticed repeatedly in the paper, reduction algorithms behave much
nicely than what is expected from the worst-case proved bounds. This has prac-
tical consequences that may speed up our attack: for example, one can under-
take this attack with less observed data than what is suggested from the formula
n ~ /2atlogm. Also, one can try to keep more than one relation from the
output of the lattice reduction used in step one.

2) The case where the trailing bits of the successive ;s are announced in place
of the leading bits can be attacked by a similar technique, at least if m is odd.
3) Paper [FHK*88] includes an idea which can be used to adapt our techniques to
the case where m is prime and a window of successive bits of the x;s is announced.
We find the details too technical to be included in the present paper.

3.2 Cryptanalysis of Damgard’s hash function

In [Dam89], Damgard proposed to base a hash function on a knapsack compres-
sion function using 256 (non modular) numbers a; of size 120 bits. His idea was to
divide the message to be hashed into blocks of 128 bits, and to apply to following
process:

o Start with a fixed initial value on 128 bits. Appending the first 128-bit
block of the message, one gets a block B of 256 bits.

e (Compression phase) Compute the knapsack transform of these 256 bits,
i.e., starting from zero, add up all a;s whose index corresponds to the po-
sition of a one bit of B. The resulting number can be encoded using 128
bits.

o Append the next block, to get 256 bits and iterate the compression phase.

In order to find a collision for this hash function, it is clearly enough to find two
different 128-bit blocks that, when appended to the initial value, yield the same
hash value. This clearly corresponds to finding a collision in a knapsack transtorm
based on 128 numbers of 120 bits. In the sequel, we study how collisions in such
a knapsack transform can be found using lattice reduction, and we show that it
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is feasible to build collisions for Damgard’s hash function. A completely different
kind of attack against this hash function has already appeared in the work of
P. Camion and J. Patarin ([CP91]). Still, it has never been implemented, and
besides, it could only find collisions for the compression function rather than for
the hash function itself. In contrast with this approach, our attack runs on a
computer and actually outputs collision for the size of the parameters suggested
by Damgard.

Unfortunately, our attack cannot be proved, even in the lattice oracle setting
described in section 2.4. Nevertheless, for a slightly weaker notion of a collision,
which we call pseudo-collision, a correct mathematical analysis can be carried
through. A pseudo-collision for Damgard’s hash function consists of two messages
whose hash value coincide except for the 8 leading bits. The practical significance
of pseudo-collisions is obvious since pseudo-collisions have a non negligible chance
of being actual collisions.

3.2.1 The basic strategy

In this section, we associate a lattice to any given knapsack-based compression-
function in such a way that collisions correspond to short vectors. Before describ-
ing the reduction, we make our definitions and notations a bit more precise: we
fix a sequence of integers, ¢ = ay, ..., a,. The knapsack-compression function
Sa, which we simply denote by S, takes as input any vector z in {0,1}" and
computes

S(x) = Z a;T;
=1

A collision for this function consists of two values  and ' such that S(z) = S(a').
In order to search collisions, we reduce the following lattice:

Kay Kas -+ Ka,
1 0O --- 0
B = 0 r - 0
0 0o --- 1

Note that this lattice is exactly the lattice used in the original Lagarias-Odlyzko
attack for solving knapsack problems (see [LO83]). Let us consider the possible
output of lattice reduction. Since K is large, it is clear that the first coordinate
of a short vector is 0. As for the other coordinates, we expect them to be all 0, 1
or —1. Indeed, if this happens we clearly get a collision: from an element of the
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lattice

€n

with all coordinates 0, 1 or —1, we get that

n
Z c¢a; = 0
=1

and thus:

dai= ) a

;=1 e =—1

3.2.2 Practical results in small size

As was stated above, finding a collision for Damgard’s hash function amounts to
compute collisions for a knapsack compression function based on 128 numbers
with 120 bits each. We develop this approach in appendix E where we show
that actual lattice reduction programs disclose such collisions. Thus, Damgard
hash-function can be broken using lattice reduction.

3.2.3 The size of pseudo-collisions

Pseudo-collisions are collisions for the function obtained by replacing the original
knapsack-compression function by reducing it modulo some power of two. This
means that we will be working with modular knapsacks instead of usual knap-
sacks. In this subsection and the next one, we use the same approach as in the
Lagarias-Odlyzko attack. More precisely, we fix a value 7 < 1, we let m = [tn]
and assume that the a;s are random integers between 0 and 2™ —1. Our aim is to
compute collisions for the resulting knapsack function, where reduction modulo
2™ is performed
S(x) = Z x;a; mod 2™
i=1

Before applying lattice reduction techniques, we need to estimate the mini-
mum size of a collision, i.e. the minimum size of x — 2/, where S(a) = S(a’). The
following lemma provides a bound.

Lemma 2 Let p be a fized constant such that

p+ Hay(p) >7>p
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With probability tending exponentially to 1 when n tends to infinity, there exists
a relation .

Z c¢a; = 0

=1

where all ¢;s are 0, 1 or —1 and where

> el < pn

In the above Hy(a) denotes, as usual, —aloga — (1 — a)log(l — «).
Proof: Consider the family of all possible vectors with n coordinates, all of them

0, 1 or —1, with size pn. This family has N members where N = 27 ( pr; )

". For any such vector ¢, let

which, by classical estimates, is roughly 2°"2Hz(2)n
S(e) = 3", €a;. S(e)is a random variable depending on the random numbers a;.
When ¢ varies, we get (roughly) 2(/+H2())" random variables and it is easily seen
that, provided one discards one vector out of each pair {¢, —¢}, these variables are
pairwise independent and uniformly distributed over the integers {0, - - 2™ — 1}.
Consider the characteristic function y. of the event S(e) = 0. We get N/2 pairwise
independent random variables with mean value ¢ = zim and standard deviation

6(1 — 6). By Chebychev’s inequality the probability that
5 < Mo
A

is bounded by %. Now if
Né

ZE:XEZT

then, as soon as % exceeds one, a suitable collision is obtained. To see this,
observe that some value S(¢) is zero and therefore

2 ai= ), a

;=1 e =—1

The condition on N can be written N > 427" and is satisfied, for n large enough,
under the hypothesis of the lemma. We get that a collision exists with probability
>1-— %. As N¢ is exponentially small, this concludes the proof of the lemma.
Remarks.

1) The careful reader will have noticed that the above proof is (consciously)
flawed. Due to the fact that 27 is even, S(¢) and S(¢€’) are not independent when

€ and ¢ have the same domain. This involves a correction term for the standard

> X

deviation o of
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The correction for o is bounded by
§20H2(p)n920m < N §9(o=T)n

This gives an opportunity to use the hypothesis 7 > p in order to conclude that
the correction is negligible.

2) Let L(7) be the real number < 1/2 defined by
L(r) + Hy(L(7)) = 7

Then, for p slightly greater than L(7), the hypotheses of the lemma hold. Hence
we may sum up the lemma by stating that collisions of size L(7) + o(1) almost
always exist.

3.2.4 A provable mildly exponential attack for pseudo-collisions

For the rest of the paper, we assume that we are granted access to a lattice re-
duction oracle. As was already pointed out in section 2.4, this approach, provides
a way to focus on the reduction of a given problem (here collision search) to a
lattice problem, without needing to worry about the state of the art in lattice
reduction algorithms. Recall that a lattice oracle outputs at no computing cost
a shortest vector of a given lattice. In practice, any call to the oracle will be re-
placed either by the LLL algorithm [LLL82] or by a blockwise Korkine-Zolotarev
algorithm.

In order to search collisions in the modular case, we could try to reduce the
following lattice, which is a variant of the one used above:

Ka, Kay -+ Ka, K2"
1 0 -~ 0 0
g=| 0o 1 - 0 0
o 0 -+ 1 0

Unfortunately, a lattice oracle is not guaranteed to output a vector with all
coordinates 0, 1 or —1, even given the known bound for such a vector that comes
from the previous lemma. In order to take advantage of this known bound, we
fix a subset Y of {1,---,n} with an elements together with a function o from Y’
into {—1,41}. We then coalesce those a;s with index in Y by setting

by = Z o(?)a; mod 2™

€Y
Reindexing the other a;s as by, ..., b1_a)n, We thus obtain a modular knapsack
containing (1 — a)n + 1 random modular numbers b, b1, ..., br_a),. We can
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now associate the following lattice to the knapsack problem:

Kby Kby - Kby_gy, K2m
10 0 0
= 0 1 - 0 0
0o 0 - 1 0

We know that the lattice generated by B contains a short vector of size (L(7)+
o(1))n with coordinates 0, 1 or —1, where L(7) has been defined in the previous
section. If the restriction of this vector to Y matches up with o, then, grouping the
indices in Y, we get a short vector of B’ of size (L(7)+e—a)n with coordinates 0, 1
or —1. Using an argument similar to those in the Lagarias-Odlyzko paper [LO83],
we can prove that, with probability tending exponentially to 1, a lattice oracle
will output such a vector, provided a exceeds some value depending on 7. Details
of the proof appear in appendix D. It turns out that, even though we can’t give
a close form for the minimum value of «, we obtain that « stays bounded by
1/3000.

We can now derive a provable mildly exponential algorithm, where we pick
at random a subset of size an and try all functions ¢ from such a subset into 1s
and —1s. This algorithm requests O(2°") calls to the lattice reduction oracle. Its
probability of success can be estimated as 27#" with

p=—(1—a)log(l —a)—plogp+(p—a)log(p — a)

Computations show that the expected number of oracle calls 2(“t¥" remains
bounded by 27199 Albeit exponential, this is much more efficient than exhaus-
tive search.
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Appendix A

In section 3.1.1, we had to consider a lattice L(a) generated by the columns of
the following matrix

1 0 0
a m 0
a2 0 m - 0
a=t 0 0 - om

We then claimed that a vector U belonging to L(a) and of size O(m/+°(1)
was presumably equal to zero. When m is a squarefree integer, this is justified
by the following:

Theorem 1 Let t and € be given. There exist constants K(t), c(e,t) and an
exceptional set E(m,e,t) of values of the multiplier a, such that

i) | E(m,et)]|< m'~e

i) for any m > (e, t) taken outside the exceptional set E(m, e, t), A(L) is bounded
from below by K(if)m%_E

The proof if this theorem is implicit in [FHK*88]: since it is doubtful that
the present appendix will be of any use to readers not familiar with this paper,
we simply indicate how to extract the above result from the proof of lemma 3.2
of [FHK*88]. Our lattice L(a) is exactly obtained from a lattice denoted L* in
this proof by multiplying all vectors by m and our variable ¢ stands for k. With
these minor notational changes in mind, one can see that it is proved in [FHK*88]
that, for m exceeding some constant ¢(e, ), the following holds:

1 1
ALy) > =37y
2t
This is precisely what we need.

Following [FHIK*88], the theorem can be extended to the case when m is
0-squarefree i.e. when

! !
m=[[p and J[pi'<m’
The resulting bound becomes

K(tym™ 5=

23



Following [FHK*88], again, the condition on m can be dropped when ¢ = 3.
We simply state the result.

Theorem 2 Let € be given. There exist constant K(1), ¢(€) and an exceptional
set E(m,e€) of values of the multiplier a, such that

i) |E(m, e, t)] < c(e)m!'=</?

ii) for any m taken outside the exceptional set E(m,e€), A(L) is bounded from
below by Kmi~e

Appendix B

In this appendix, we investigate the probability that z1 — x¢ is not prime to m.
This appears in the analysis of our algorithm against Knuth’s truncated linear
congruential generator. If this happens, a part of our argument fails: the one
by which we showed that the polynomial P(x), found at the end of the first
step, vanishes at ¢ modm. Fortunately, this is not too likely as shown by the
following.

Theorem 3 Assume m is 0-squarefree, then, if a and xo are chosen indepen-
dently and uniformly from the integers modm, then the probability that m and
T — xo are not relatively prime is bounded by 2m°®~".

Proof: We have

1 — 29 = (a — 1)xg mod m

Now, it is easily seen that x; — xg is not prime to m if either xg or a — 1 has

Hf e;—1
=1

non-trivial ged with m. Each event happens with probability + <mf!

Appendix C

In this appendix, we show that if L and L are full dimensional lattices, L a
sublattice of L and if random elements of L, say Pi,--- , P, are taken from a
ball of fixed (large) radius, then, as soon as ¢ is large enough, L is, with high
probability, the lattice spanned by a basis of L together with Py,---, P,. This
is related to the second part of our algorithm against Knuth’s truncated linear
congruential generator, where we use a bunch of polynomials obtained from step
one in order to disclose the values of m and a. Although, this offers no proof
of the success of our attack, this gives strong evidence that the algorithm will
disclose the correct secret values. Repeated experiments confirm this heuristic
analysis.

We let L; be the lattice generated by L and P, ---, P;. By volume estimates,
we can see that the probability that F; is taken within L;_ is essentially equal to
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A(L)
A(Li_l) . )
P;s are drawn does not consist of an exact number of parallelepiped generated
by a basis of L). In in any case, since both determinants are integers, this is

bounded by 7 = 1/2 + ¢, unless L = L;,_y. When P, lies in L;_; or, equivalently,
L; = L;_1, we say that 7 is a stationary index. We let k£ = log(%)). If, at least
k indices are non-stationary, then, since for every such index the determinant of
L; decreases by a multiplicative integer ratio, we get A(L,) < AZ(;f) and therefore
A(L,) < 2A(L). This, in turn implies A(L,) = A(L) since A(L,) is a multiple
of A(L) and finally L, = L. The following lemma bounds the probability that

this equality does not hold.

(the word essentially coming from the fact that the ball from which the

Lemma 3 There exists a constant A(€) such that whenever q is at least A(e)k,
the probability that L, # L is exponentially small w.r.t. k

Proof: If L, # L, then, for each ¢ < ¢, L; is different from L and the number
of nonstationary indices is less than k. For a fixed subset S of {1,---,¢}, the
probability that this situation happens with S being the set of nonstationary
indices is at most 777151, This gives for the requested probability = the upper

bound .
q q—1
(1)

=0

Using the classical upper estimate

og
5 ( ¢ ) < 2o
1) <

=0
where Hy(a) = —aloga — (1 — a)log(l — «). we get that

< 9FNH2(3)+(A-1)log7]
Since the coefficient of k in the exponent is equivalent to Alog 7 when A tends to
infinity, the exponent is < —k when X exceeds some constant A(e).

Appendix D

In this appendix, we clarify the link between the Lagarias-Odlyzko attack against
low-density knapsacks and our cryptanalysis of knapsack hash-functions. The
Lagarias-Odlyzko scenario deals with elements of a given knapsack together with
a target sum, which is obtained from a proportion p of the elements. Thus,
we know that in the Lagarias-Odlyzko lattice, there exists a short vector of size
roughly /pn. The question amounts to the following: Is this vector the shortest
one? If the answer is yes, then an oracle for lattice reduction successfully decrypts
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the cipher, otherwise the proof fails. We now follow the analysis of the Lagarias-
Odlyzko attack that appears in [Fri86] and refer to this paper. The basic method
of [Fri86] is to count the number of integer points lying in the sphere of radius
\/prv centered at the origin and to claim that, for each such integer point, the
probability that it provides a short vector of the Lagarias-Odlyzko lattice is 277/¢
where d is the density of the knapsack. From this analysis, one can derive a
sufficient condition ensuring that a call to a lattice oracle inverts the cipher with
very high probability. The condition is written:

SHES

c(p) <

where ¢(p) is defined by ¢(p) = log,(h(z0)/=

the unique solution in |0, 1| of

o3

), with A(z) = 142552, 2% and 2

h/
() =,

In our attack against hash-functions, the analysis is similar but the parameters
differ. More precisely, once we have guessed an correct bits of a collision, as
explained in section 3.2.4, we obtain a short vector of size (L(7) + ¢ — a)n which
belongs to the lattice built from a knapsack consisting of (1 — a)n numbers with
7n bits. Thus the values of the parameters are:

_L(T)—I—e—a
N ]l -«

and

The inequality ¢(p) < % can accordingly be written as

1
d
a > G (7).

Since € is as small as we want, we set ¢ = 0, and compute Gy.
Clearly
a< L(r) <1,

thus p as well as ¢(p) are decreasing functions of a. Also, 1/d is an increasing
function of « so that, for fixed 7, the curves y = ¢(p) and y = 1/d with « ranging
in the interval [0, L(7)] cross at a single point. The corresponding value of « at
the cross point is the required real number Go(7). There is no closed form for
Glo(7). Still, we have made numerical computations, and computed the curve
a = Go(7) as shown in figure 3.2.4.

In order to bound the expected number of oracle calls 2" we also com-
puted p as a function of 7 for the limit case e = 0. The resulting curve is shown
in figure 3.2.4.
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Appendix E

In this section, we report on practical results showing that collisions in knapsack
compression functions with compression rate 7 = 1 can be actually found, at
least up to dimension 120. In order to obtain these results, we have devised a
specific lattice reduction algorithm that is very efficient for the kind of lattices
involved. This algorithm is a variation of Schnorr and Fuchner (see [SE91])
pruned blockwise Korkine-Zolotarev reduction. There are two slight changes in
the algorithm, which we briefly discuss for the cognoscendi. Firstly, whenever the
first vector in the lattice consists only of 0, 1 and —1, the program stops since
it has found a collision. The second change is in the so-called enumeration step:
during this enumeration, the program searches through the same space as in the
original algorithm but, instead of searching the whole space and choosing the new
vector at the current position as the vector with shortest possible projection, the
enumeration stops as soon as an improvement for the current position has been
found. The following table gives the success rate and average running time for
blocksize 50 and dimension varying from 50 to 95. The experiments were made

on an IBM RS6000 model 590.

Dimension | Success rate | Av. Time
50 10/10 3.7s
55 10/10 8.9s
60 10/10 11.5s
65 10/10 19.4s
70 10/10 26.9s
75 10/10 44.6s
80 10/10 76.5s
85 10/10 225.2s
90 8/10 234.2s
95 8/10 461.4s

Dealing with dimension 120 is more difficult since unsuccessful trials can ap-
pear that waste a lot of time. We have bypassed this problem by limiting the
running time for each trial. Using this technique, we have obtained the following

results:
Time limit | # trials | # success | rate
1h 100 3 10.03
4h 20 310.15
~ 12h 30 8 10.27

Remark: The experiments with time limit ~ 12h, were not made on the IBM,
but on a Sun Sparc 10 model 51, which is roughly twice slower. The actual time
limit was 24h.
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