
Lattice Reduction: a Toolbox for theCryptanalystAntoine JouxDGA/CELARBruz, France Jacques SternLaboratoire d'InformatiqueEcole Normale Sup�erieure, ParisMay 18, 1994AbstractIn recent years, methods based on lattice reduction have been used re-peatedly for the cryptanalytic attack of various systems. Even if they donot rest on highly sophisticated theories, these methods may look a bitintricate to the practically oriented cryptographers, both from the mathe-matical and the algorithmic point of view. The aim of the present paper isto explain what can be achieved by lattice reduction algorithms, even with-out understanding of the actual mechanisms involved. Two examples aregiven, one of them being the attack devised by the second named authoragainst Knuth's truncated linear congruential generator, which has beenannounced a few years ago and appears here for the �rst time in journalversion.1 Introduction1.1 Historical backgroundA lattice is a discrete subgroup of Rn or equivalently the set L�1b1 + � � �+ �pbpof all integral linear combination of a given set of n-dimensional vectors b1; � � � ; bp.If these vectors are independent then (b1; � � � ; bp) is said to be a basis of L and pis its dimension.From the mathematical point of view, the history of lattice reduction goesback to the theory of quadratic forms developed by Lagrange, Gauss, Hermite,Korkine-Zolotare� and others (see [Lag73, Gau01, Her50, KZ73]) and to Minkovski'sgeometry of numbers ([Min10]). With the advent of algorithmic number theory,1



the subject had a revival around 1980, when Lov�asz found a polynomial-timealgorithm that computes a so-called reduced basis of a lattice. Actually, a reduc-tion algorithm of the same 
avor had already been included in Lenstra's work oninteger programming (cf. [Len83], circulated around 1979) and the lattice reduc-tion algorithm reached a �nal form in the paper [LLL82] of Lenstra, Lenstra andLov�asz, from which the name LLL algorithm comes. Further re�nements of theLLL algorithm were proposed by Schnorr ([Sch87, Sch88]).The relevance of those algorithms to cryptography was immediately under-stood: in April 1982, Shamir ([Sha82]) found a polynomial time algorithm break-ing the Merkle-Hellman public key cryptosystem ([MH78]) based on the knapsackproblem, that had been basically the unique alternative to RSA. Shamir usedLenstra's integer programming algorithm but, the same year, Adleman ([Adl83])extended Shamir's work by treating the cryptographic problem as a lattice prob-lem rather than a linear programming problem. Further improvements of thesemethods were obtained by Lagarias and Odlyzko ([LO83]), by Brickell ([Bri85])and, more recently by Coster, La Macchia, Odlyzko, Schnorr and the authors([CJL+92]).Lattice reduction has also been applied successfully in various other cryp-tographic contexts: against a version of Blum's protocol for exchanging secrets([FHK+88]), against truncated linear congruential generators ([FHK+88, Ste87]),against cryptosystems based on rational numbers ([ST90]) or modular knapsacks([JS91, CJS91]). Despite the available literature, papers are still submitted (andsometimes published) that describe cryptographic protocols that can be broken,via lattice reduction techniques, almost by inspection. This fact, which maybe due to the apparent technicality of the subject, drove us to try to write apaper that explains the power of lattice reduction in cryptography, without re-quiring any understanding of the actual mechanisms involved in the algorithms.Of course, this was also an opportunity to publish, in �nal form, results that hadbeen announced in [Ste87] and [GJ94].1.2 Functional description of lattice reduction algorithmsAs was already mentioned, a lattice L consists of all integral linear combination�1b1 + � � �+ �pbpof a given set of n-dimensional vectors b1; � � � ; bp. From the algorithmic pointof view, we are interested into the case where all bi's have integer coordinates.In this case, the lattice L can be represented by a very simple data structureby considering the matrix BL whose columns are the coordinates of the vectorsb1; � � � ; bp. Lattice reduction algorithms perform the following very simple opera-tions:i) exchanging two columns of BL 2



ii) adding up to a given column an integer multiple of another oneiii) deleting zero columnsWhat is not simple is the precise way the sequence of above transformations ischosen. We will simply mention that the algorithm tries:i) to have the shortest columns aheadii) to make the columns mutually \as orthogonal as possible"Ideally, we would like to come out with the �rst column of the matrix con-sisting of the coordinates of a shortest non zero vector of L and with \almost"orthogonal columns. Unfortunately, this is not the case and we note that noe�cient algorithm is known for �nding the shortest non-zero vector of L. This isactually a fundamental problem which lies at the heart of the solution of manyproblems in number theory. Still, from the output of the algorithm, it is possibleto build a vector whose length does not exceed the length of a shortest vector bymore than a given multiplicative constant, depending on the dimension of L aswell as on the variant of the algorithm used. It turns out that this is enough formany applications.1.3 Proved PerformancesLet L be a lattice generated by of a set of n-dimensional vectors Let BL be theassociated matrix. Denote by B the value of the matrix obtained as an outputof the LLL algorithm and by b1; � � � ; bq its column vectors. Finally let �1 be thelength of a shortest non zero vector of L (in the usual euclidean sense). Thefollowing essentially comes from [LLL82]:Fact 1 i) b1; � � � ; bq is a basis of Lii) jb1j � 2(q�1)=2 � �iii)jb1j � 2q(q�1)=2 � (�(L))1=qIn the above, �(L) denotes the determinant of L, that is the (euclidean)volume of the q-dimensional parallelepiped enclosed by b1; � � � ; bq. In case thelattice is full dimensional (which means n = q), this volume is the absolutevalue of the determinant of B or of any other basis generating L. In the generalcase, �(L) can also be computed by a simple formula which we omit. Conditioniii) means that the length of b1 is not too far from what it is in the \ideal"case, corresponding to a basis consisting of mutually orthogonal vectors of equallength.For the cryptanalyst, the heuristic meaning of fact 1 is that, if he only needsa short enough vector of a lattice, LLL will do the job. Similarly, if he knowsthat the (unknown) shortest vector is much smaller than the other elements ofthe lattice or much smaller that the value (�(L))1=q, then LLL will presumablydisclose it. There is a generalization of fact 1 which is sometimes useful: it isrelated with the so-called successive minima of the lattice: the ith minimum is3



the smallest positive value �i such that there exist i linearly independent elementsof the lattice in the ball of radius �i centered at the origin.Fact 2 jbij � 2(q�1)=2 � �iFor the cryptanalyst, this fact amounts to saying that if i (unknown) linearlydependent vectors of the lattice are very small, the sublattice they span will bedisclosed by LLL.Actually, the LLL algorithm consists of a family of di�erent algorithms de-pending on a constant 
, 14 < 
 < 1. The case that is described above correspondsto the value 
 = 3=4 and if another value of 
 is chosen, then the powers of twoappearing in the above facts must be replaced by the same powers of 4=(4
 � 1).In [Sch87], Schnorr proposes a whole hierarchy of lattice reduction algorithms,which are extensions of the LLL algorithms and which he calls blockwise Korkine-Zolotare� reductions (BKZ). What changes here is the strategy to perform theoperations on the matrix BL. The extended strategy involves a search on sublat-tices generated by blocks of columns of the original matrix. When the size of theblocks grows, the performances of the algorithm get better and better, achievingthe situation obtained from fact 1 by replacing powers of two by powers of anyconstant � > 1.1.4 Actual performancesIn all the applications, experiments show that LLL behaves much more nicelythan should be expected in view of the theory. Especially the worst-case constantKq, which appears in fact 1 as 2 q�12 seems to be much smaller in practical terms.1.5 ImplementationsThe running time of the LLL algorithm is polynomial in the dimension n of thespace, the dimension q of the lattice and the size of the matrix BL. More pre-cisely, if m is the maximal number of bits in the coe�cients of the original matrixBL, then the running time of the standard LLL algorithm is O(nq5m3). Albeitpolynomial, this is not negligible and does not allow any e�cient implementa-tion. Following a suggestion made by Odlyzko and independently by Schnorr,actual implementations of LLL reductions, including the one used by the au-thors, substitute 
oating arithmetic to the rational arithmetic required by theoriginal speci�cation of the algorithms. Nevertheless, this cannot be done in anaive way as the strategy may occasionally be misled by 
oating point errorsand enter a loop. Fortunately, these occasional errors can be spotted and cor-rected, at a minor cost in terms of computing time, by performing the \exactcomputation".Of course, the running time of the LLL algorithm also depends on the valueof the constant 
 adopted and several heuristics can be helpful such as computing4



�rst with a moderate value of 
 and ultimately with a value close to 1. Similarly,BKZ reductions have a worse computing time than LLL. Finally, the computingtime also depends on the kind of problems one addresses.2 Generic problems that fall under the scope oflattice reduction2.1 Direct use of lattice reductionBy \direct use", we mean practical applications where the lattice comes from thedata in a natural way. This was the situation for the original attack against theMerkle-hellman cryptosystems. We simply mention the method, �rstly becauseit does not involve any speci�c analysis besides the results stated in section 1 andalso because it did not prove useful in more recent work.2.2 Dependence relations with coe�cients of moderatesizeThe search of linear dependence relations with small coe�cients in a family ofnumbers or vectors is probably the source of most frequent uses of lattice reduc-tion. This general class of applications can be further divided into two cases,ordinary relations and modular relations. We deal with the ordinary case here,and with the modular case in the next subsection. It should be noted that we donot cover here the problems of solving knapsacks and �nding minimal polynomi-als. We will consider them as speci�c problems and they will receive a detailedtreatment in subsequent subsections. Before we turn to practical matters, webrie
y discuss the question from a mathematical point of view.2.2.1 Some combinatorial landmarksFor the cryptographer, the search for linear dependence relations with coe�cientsof moderate size can occur either because he is looking for speci�c objects, whoseexistence is known (trapdoors etc.) or for generic objects he might use for afurther analysis. The following combinatorial lemma ensures the existence ofsuch generic relations.Lemma 1 Assume V1, : : : , Vn is a family of vectors with integer coe�cients inthe t-dimensional space, with t < n. LetM denote an upper bound for the absolutevalues of all coe�cients of the various Vis. There exists an integer relationnXi=1 �iVi = 05



such that max j�ij � B, where B is given bylogB = t logM + log n+ 1n� tRemark: In the whole paper log will denote the base 2 logarithm.Proof: Consider all possible linear combinationsnXi=1 �iViwith 0 � �i < B. An easy counting argument shows that the numbers of suchrelations is exactlyBn and that the resulting vectors have all coordinates (strictly)bounded by nBM . Since there are less than (2nBM)t such vectors, two distinctrelations have to compute the same value, as soon as(2BM)t � Bnwhich amounts to the given relationlogB = t logM + log n+ 1n� tThis gives nXi=1 �iVi = nXi=1 �0iViwith 0 � �i < B and 0 � �0i < B. The result follows by di�erence.Remark: It is obvious that the shortest dependence relation (say w.r.t. theeuclidean length) can be much shorter than what is claimed in the above lemma.We give a heuristic argument to show that our estimate is probably pessimistic.If we consider that vectors computed by the formulanXi=1 �iVibehave like random elements in the t-dimensional cube of size (2BM) then, by thebirthday paradox, we can see that a collision happens with constant probabilityas soon as logB = t2 logM + log n+ 1n� t=22.2.2 Practical point of viewGiven a family of integer vectors (or numbers) V1, : : : , Vn, let us describe theprinciple of dependence relations search. We construct the lattice given by the6



columns of the following matrix:0BBBBBBB@ KV1 KV2 � � � KVn1 0 � � � 00 1 � � � 0... ... . . . ...0 0 � � � 1 1CCCCCCCAwhere K is a well chosen constant.We distinguish two cases: either we are looking for exact relations or elsefor approximate relations. In the �rst case, K should be large enough to ensurethat the �rst vector of the reduced basis has zero components in its upper partcorresponding to the �rst t coordinates, where t is the dimension of the Vis. Moreaccurately, in view of fact 1, K should be larger than the size of the expectedlinear relation multiplied by a a safety coe�cient 2n=2. Thus, LLL will discovershort vectors whose upper part is guaranteed to be zero, and these vectors clearlycorrespond to linear dependencies with small coe�cients. The coe�cients appearas coordinates of rank t+ 1; � � � ; t+ n of the output vector.In the case of approximate relations, we can choose K = 1. Output vectorswill be short but there is no reason why the upper part should be zero. Thisclearly corresponds to approximate dependencies with small coe�cients.2.3 Modular relationsIn the previous section, we explained how to disclose linear relations with mod-erate coe�cients between integer vectors. We now discuss the case of modmnumbers. The basic problem is how one can force lattice reduction to deal withmodular relations. The answer is very simple and consists in adding to the lat-tice basis a few columns that ensure modular reduction as shown in the followingmatrix: 0BBBBBBB@ KV1 KV2 � � � KVn KmI1 0 � � � 0 00 1 � � � 0 0... ... . . . ... 00 0 � � � 1 0 1CCCCCCCAwhere I is a t-dimensional identity matrix, with t the dimension of the Vis. It isclear that the added columns force reduction of numbers modulo m.From a practical point of view, we need to foretell whether or not the resultinglattice will disclose the expected dependence relation. To discuss this questionand provide heuristics, we remark that the lattice includes short vectors that arenot related whatsoever with the existence of any linear relation. These vectorscan be obtained by multiplying any of the �rst n vectors in the initial basisby a factor m and then by reducing upper part modm, with the help of the7



extra columns. We obtain a vector whose components are all zero except onewhose value is m. Applying the above construction to all Vis, we get a familyof n vectors of size m that are mutually orthogonal. Experiments show that,if m is too small, this family appears in sequence as the �rst output vectors ofa reduced basis, and thus masks any useful information about linear relations.However, if the (euclidean) size of the expected relation is smaller than m, we canreasonably hope that the reduction algorithm will �nd it. Using fact 1 above, itis possible to give conditions that will ascertain the above heuristic observations.Still, this is not very useful in practice and we will not pursue the matter. Weclose the section, by observing that, in the special case where m = 2, we cannotexpect to disclose relations with more than 3 ones. Moreover, such relations canusually be found faster by exhaustive search. This explains why lattice reductionalgorithms are not successful for attacking binary problems, such as �nding theshortest codeword in a linear code, or the solution of a SAT problem.2.4 Knapsack problemsSolving knapsack problems is a subcase of searching linear relations between givennumbers. However, we treat it speci�cally, not only because of its historical im-portance in cryptography but also because it is is more involved than the generalcase, due to the fact the the expected relations have coe�cients in f0; 1g. Incryptographic scenarios, we know that such a relation exists between the givenelements of the knapsack a1, : : : , an and the target sum s =Pni=1 �iai. Moreoverwe know that the euclidean size of this relation is p�n, where � is the proportionof ones in the relations. � may or may not be known to the cryptanalyst but, inmost practical examples it is a part of the cryptographic system itself. Further-more � is an important parameter when trying to analyze the performances oflattice-based attacks against knapsack problems. However, discussing the in
u-ence of � is somewhat technical and is not within the scope of this article. Werefer the interested reader to [CJL+92] or [Jou93]. In the sequel, we will considerthe most natural case and set � = 1=2.Another parameter that is quite important in knapsack problems is the densityof the knapsack: d = nlog2(maxi ai) :This parameter is the ratio between the number of elements in the knapsackand the number of bits in each element. This parameter determines the size ofshort vectors in the lattice other than the f0; 1g solution vector. It was shown in[LO83], that, when the density is low, then the shortest vector gives the solutionto the knapsack problem. If we use the lattice that was described above, andif we assume that shortest lattice-vectors can be e�ciently computed (even ifthis is not totally accurate), then low density means d < 0:6463. In recent work([CJL+92]), this condition was improved to d < 0:9408. In order to reach that8



bound, either one of the following lattices can be used0BBBBBBBBB@ Ka1 Ka2 � � � Kan �Ksn+ 1 �1 � � � �1 �1�1 n+ 1 � � � �1 �1... ... . . . ... ...�1 �1 � � � n+ 1 �1�1 �1 � � � �1 n+ 1 1CCCCCCCCCA 0BBBBBBB@ Ka1 Ka2 � � � Kan Ks1 0 � � � 0 1=20 1 � � � 0 1=2... ... . . . ... ...0 0 � � � 1 1=2 1CCCCCCCA :Before we close this section, let us warn the reader on the meaning of thelow-density attacks. The inequality d < 0:9408, provides a provable guaranteethat, from a shortest vector for a lattice computed from the problem one can,with high probability, solve the original knapsack problem. This kind of result issometimes described in the setting of \oracles": it states that, if one is grantedaccess to a lattice reduction oracle, i.e. to a function that returns the shortestvector of a lattice (at no computation cost), then one can solve the low-densityknapsack problem. It does not mean at all that one cannot successfully attackknapsack problems with a higher density: it only means that such attacks willnot follow from a theorem but only from various heuristics. From a practicalpoint of view, it does not make much di�erence.2.5 Minimal polynomialsFinding the minimal polynomial of a real algebraic number x of degree d cor-responds to searching a linear dependency between 1, x, x2, : : : , xd. Since weare working with integer lattices, we choose a large integer K and we try to �ndan approximate relation between the closest integers to K, Kx, Kx2, : : : , Kxd.More precisely, we reduce the following lattice:0BBBBBBBBB@ K bKxe bKx2e � � � bKxde1 0 0 � � � 00 1 0 � � � 00 0 1 � � � 0... ... ... . . . ...0 0 0 � � � 1 1CCCCCCCCCAThe �rst vector of the reduced lattice can be written as:0BBBBBBB@ �a0a1...ad 1CCCCCCCA :9



Since we wish to interpret a0, : : : , ad as the coe�cients of the minimal polynomialof x, i.e. we want to conclude that a0 + a1x+ a2x2 + � � � + adxd = 0. The mostimportant parameters here are K and d. If d is smaller than the degree of theminimal polynomial of x then this technique cannot succeed. Likewise, if K istoo small, then it cannot succeed either. To see this, assume for example that xis between 0 and 1 and apply lemma 1: this yields a linear combination of theelements on the �rst row of the above matrix with coe�cients bounded above byB, where B satis�es: logB = logK + log d + 1n� 1If K is small, this relation is much more likely to appear as an output to latticereduction algorithms than the one corresponding to the minimal polynomial.Taking into account the heuristic remarks following lemma 1, it is safe to haveK � (max jaij)2d. Hence, K should be much larger than the expected size of thecoe�cients of the minimal polynomial. If d is not exactly known, for example ifwe only know an upper bound on the degree of the minimal polynomial of x, thenthe following trick can be applied: take the �rst two or three vectors appearing inthe output reduced lattice, transform them into polynomials and compute theirgcd. If K was large enough the minimal polynomial of x is usually obtained.It is very important to know that the procedure we just described can givepositive results, i.e. it can �nd a minimal polynomial, but cannot give negativeone.3 Two examplesWe now turn to two speci�c examples. As mentioned in the introduction, thesewere chosen among the authors' contributions in the area and appear here forthe �rst time in journal version.3.1 Cryptanalysis of Knuth's truncated linear congruen-tial generatorsIn this section, we discuss the predictability of the sequence given by outputtinga constant proportion of the leading bits of the numbers produced by a linearcongruential generator. As is known, linear congruential generators (LCG) area quite popular tool to produce pseudo-random sequences. The LCG works asfollows: a modulus m is chosen as well as a multiplier a, relatively prime to m,and an increment b. Then, from a given seed x0, one can generate the sequence(xi), de�ned by xi+1 = (axi + b) mod mKnuth's book ([Knu69]) contains a thorough discussion of these generators.10



In case all the bits of the successive xis are announced, the sequence becomesexactly predictable even if the modulus, the multiplier and the increment are notknown. This is a result of J. Boyar (see [Plu82]). The journal version [Boy89],which appeared after [Ste87], extends the initial method to the case where a smallportion of the lower bits are discarded.The idea of outputting the leading bits of each of the xis in order to increasethe resistance of the LCG goes back to Knuth ([Knu80]). Thus, one can output,for example, half of the bits or a smaller proportion. The predictability of the re-sulting sequence has been investigated by Frieze, Hastad, Kannan, Lagarias andShamir ([FHK+88]). They showed that, provided both the modulus m and themultiplier a are known, the sequence becomes completely predictable once theleading bits corresponding to the �rst few xis have been announced. Actually,their algorithm may fail on a set of exceptional multipliers but the proportion ofintegers modm in this set is shown to be as small as O(m��), for some given pos-itive constant � < 1. Of course, the parameter � is connected with the number ofobserved outputs: the more observations are available, the more the algorithm isreliable. We refer to [FHK+88] for exact statements. We note that the techniqueapplies equally to the case where any �xed proportion � of the bits is announced.The mathematical analysis becomes more intricate and the proof is only carriedthrough for speci�c values of m: square-free or \almost square-free" numbers.Again, we refer to [FHK+88] and we observe that, for practical purposes, themild theoretical restrictions in the proofs are not too relevant.Our results cover the case where m and a are unknown parameters. In view ofthe above, our sole task is to disclose these values. We will describe a polynomial-time algorithm that performs this task. This algorithm includes two steps: inthe �rst step, our algorithm produces a polynomial P (x) of degree O(plogm),with integral coe�cients, such thatP (a) = 0 mod mThis part of the algorithm is proved, using results from [FHK+88] and similarassumptions on m and a. In the second step, we start with a sequence of suchpolynomials and we propose an algorithm that provably outputs a multiple ~m ofm. Based on a heuristic analysis, we then make highly plausible that ~m quicklydecreases to m when the number of polynomials in the sequence increases. Thisis con�rmed by experiments. Finally, we show how to compute a once the correctvalue of m has been recovered.3.1.1 First step of the algorithmIn order to describe both the algorithm and the underlying analysis, we needsome notations. We let � be the number of bits of the modulus m. If we outputa proportion � of bits, we can writexi = 2��yi + zi11



where � = 1 � �, yi consists of the leading bits of xi and zi of the trailing bits.Our algorithm is more accurately described as a sequence of di�erent algorithmsdepending on a parameter t. We let Vi be the element of Z t de�ned byVi = 0BBBB@ yi+1 � yiyi+2 � yi+1...yi+t � yi+t�1 1CCCCAApplying the techniques of section 2.2, we can �nd an linear relationnXi=1 �iVi = 0whose coe�cients are moderate integers. More precisely, it follows from lemma 1that such a relation exists with j�ij � B withlogB = t log(2��) + log n + 1n� t = t�� + log n+ 1n� tConsidering the multiplicative loss 2(n�1)=2 coming from fact 1, it follows that, ifwe use LLL algorithm, the euclidean length j�j of the output relation will satisfyj�j � pn2(n�1)=2BWe now consider the (unknown) vectors Wi de�ned byWi = 0BBBB@ xi+1 � xixi+2 � xi+1...xi+t � xi+t�1 1CCCCAand we let U = nXi=1 �iWiWe note that each coordinate of Wi�Ui is the di�erence zi+1� zi of two integersbetween 0 and 2�� hence is � 2�� . From this, using the Schwarz inequality, weget that jU j = jPni=1 Vi�Wij is bounded above byM = ptn2��2(n�1)=2B. Takinglogarithms, we havelogM = log t+ log n2 + �� + n � 12 + t�� + log n + 1n � tWe balance the two terms with largest contribution besides �� by letting n 'p2�t�. We get (for �xed t):logM = �� +p2�t� + o(p�)12



Since � is basically logm, we �nally obtain: jU j = O(m�+�), for any � > 0.We will now proceed into showing that U is zero. We give a heuristic argumentand refer the interested reader to appendix A of this paper where we provide amathematical proof, based on results from [FHK+88]. We note thatxi+j+1 � xi+j = aj(xi+1 � xi) mod mFrom this it follows that all vectors Wi belong to the lattice L(a) generated bythe columns of the following matrix0BBBBBBB@ 1 0 � � � 0a m � � � 0a2 0 m � � � 0... ...at�1 0 0 � � � m 1CCCCCCCAIt is easily seen that the determinant of this lattice ismt�1, hence the expectedsize of short vectors is around m t�1t . Since U belongs to L(a) and is of sizeO(m�+�), for any � > 0, U is unusually short as soon as � < t�1t , which means� > 1t . Such a vector has to be zero.Now that we know that U = 0, we notice thatnXi=1 �iWi = (x1 � x0) nXi=1 �iai mod mAs soon as x1 � x0 is prime to m, we get that the polynomial P (x) = P�ixivanishes at a modulo m. This is precisely what we wanted from the �rst step.Again we ignore bad luck: in appendix B, we prove that exceptional values forx1 � x0 appear with negligible probability.3.1.2 Second step of the algorithmIf we apply part 1 of our algorithm several times, we come out with a sequenceP1; � � � ; Prof polynomials of degree n, each of these vanishing at a modulo m. Now, if weidentify polynomials of degree n with elements of Zn+1, we see that the polyno-mials that vanish at a modulo m form a lattice L generated by the sequenceQi(x) = xi � ai 1 � i � nand by the constant polynomial m. This lattice is generated by the columns ofthe following matrix 0BBBBBBB@ m �a �a2 � � � �an0 1 0 � � � 00 0 1 � � � 0... ... ... � � � ...0 0 0 � � � 1 1CCCCCCCA13



The determinant of the lattice is m. Now, if the Pis generate the lattice, thenone can apply lattice reduction, output a basis of the lattice and compute thedeterminant. Based on experiments, we claim that such an algorithm actuallydiscloses m. Unfortunately, we cannot prove this fact mathematically, but, asalready observed all along the paper, the lack of proof is only a minor nuisancefor the cryptanalyst. In place, we o�er heuristic arguments that should convincethe reader that� the dimension on the subspace spanned by the Pis very quickly increasesto n+ 1� once a full dimensional lattice has been reached, the determinant of thelattice generated by the Pis, which is, a priori, a multiple ~m of m, veryquickly decreases to m.We �rst justify the �rst statement: recall that the output of the �rst part ofthe algorithm provides an actual relationX�i(xi+1 � xi)(as opposed to a relation modulo m). If the successive relations found did notspan the entire space, the vectors Wis would live in a proper subspace and hence,there would exist at least one non-trivial linear relation between their componentswhich holds truly (and not only modulo m). Such a relation would, in turn,provide a �xed linear recurrence relation satis�ed by the sequence (xi). But thebehavior of the sequences de�ned by linear recurrence relations is well known:except under exceptional circumstances they quickly tend over to zero or in�nityand therefore cannot consist of integers modm.We now turn to the second statement. Remember that the coe�cients of eachoutput polynomial Pi are bounded above by B, withlogB = s�t logm2 + o(qlogmu)By Hadamard inequality, it follows that the determinant ~m of the lattice spannedby n+1 linearly independent Pis is at most (pn + 1B)n+1. As n is equivalent top2�t logm, this bound is 2�t logm+o(logm), i.e. m�t+o(1). Now, if we assume thateach extra polynomial Pi is somehow uncorrelated to the previous ones, then, withprobability ~m=m, it is not a member of the lattice generated by these previouspolynomials, hence, when added, it decreases the determinant of the resultinglattice by some multiplicative factor. Thus, it should not take long to reach m.In appendix C, using the heuristic hypothesis that the output polynomials arerandom element of L with coe�cients bounded by B, we bound the number ofpolynomials needed by O(�t logm). 14



We �nally say a word on recovering a from m. We twist the lattice L bymultiplying all coe�cients of degree � 2 by a large constant K and we applylattice reduction. IfK is large enough (say K � m2n=2), then, by fact 2, it followsthat the sublattice of L generated by polynomials m and x� a will be disclosed:this is because the second minimum of L is of size m any any polynomial of thelattice with degree � 2 exceeds this size by a factor � 2n=2. By linear algebra,one can �nd an element A(x) of the sublattice with leading coe�cient one; thena is exactly A(0) mod m.We close the section by various remarks.Remarks.1) As was noticed repeatedly in the paper, reduction algorithms behave muchnicely than what is expected from the worst-case proved bounds. This has prac-tical consequences that may speed up our attack: for example, one can under-take this attack with less observed data than what is suggested from the formulan ' p2�t logm. Also, one can try to keep more than one relation from theoutput of the lattice reduction used in step one.2) The case where the trailing bits of the successive xis are announced in placeof the leading bits can be attacked by a similar technique, at least if m is odd.3) Paper [FHK+88] includes an idea which can be used to adapt our techniques tothe case wherem is prime and a window of successive bits of the xis is announced.We �nd the details too technical to be included in the present paper.3.2 Cryptanalysis of Damg�ard's hash functionIn [Dam89], Damg�ard proposed to base a hash function on a knapsack compres-sion function using 256 (non modular) numbers ai of size 120 bits. His idea was todivide the message to be hashed into blocks of 128 bits, and to apply to followingprocess:� Start with a �xed initial value on 128 bits. Appending the �rst 128-bitblock of the message, one gets a block B of 256 bits.� (Compression phase) Compute the knapsack transform of these 256 bits,i.e., starting from zero, add up all ais whose index corresponds to the po-sition of a one bit of B. The resulting number can be encoded using 128bits.� Append the next block, to get 256 bits and iterate the compression phase.In order to �nd a collision for this hash function, it is clearly enough to �nd twodi�erent 128-bit blocks that, when appended to the initial value, yield the samehash value. This clearly corresponds to �nding a collision in a knapsack transformbased on 128 numbers of 120 bits. In the sequel, we study how collisions in sucha knapsack transform can be found using lattice reduction, and we show that it15



is feasible to build collisions for Damg�ard's hash function. A completely di�erentkind of attack against this hash function has already appeared in the work ofP. Camion and J. Patarin ([CP91]). Still, it has never been implemented, andbesides, it could only �nd collisions for the compression function rather than forthe hash function itself. In contrast with this approach, our attack runs on acomputer and actually outputs collision for the size of the parameters suggestedby Damg�ard.Unfortunately, our attack cannot be proved, even in the lattice oracle settingdescribed in section 2.4. Nevertheless, for a slightly weaker notion of a collision,which we call pseudo-collision, a correct mathematical analysis can be carriedthrough. A pseudo-collision for Damg�ard's hash function consists of two messageswhose hash value coincide except for the 8 leading bits. The practical signi�canceof pseudo-collisions is obvious since pseudo-collisions have a non negligible chanceof being actual collisions.3.2.1 The basic strategyIn this section, we associate a lattice to any given knapsack-based compression-function in such a way that collisions correspond to short vectors. Before describ-ing the reduction, we make our de�nitions and notations a bit more precise: we�x a sequence of integers, a = a1, : : : , an. The knapsack-compression functionSa, which we simply denote by S, takes as input any vector x in f0; 1gn andcomputes S(x) = nXi=1 aixiA collision for this function consists of two values x and x0 such that S(x) = S(x0).In order to search collisions, we reduce the following lattice:B = 0BBBBBBB@ Ka1 Ka2 � � � Kan1 0 � � � 00 1 � � � 0... ... . . . ...0 0 � � � 1 1CCCCCCCA :Note that this lattice is exactly the lattice used in the original Lagarias-Odlyzkoattack for solving knapsack problems (see [LO83]). Let us consider the possibleoutput of lattice reduction. Since K is large, it is clear that the �rst coordinateof a short vector is 0. As for the other coordinates, we expect them to be all 0, 1or �1. Indeed, if this happens we clearly get a collision: from an element of the16



lattice e = 0BBBBBBB@ 0�1�2...�n 1CCCCCCCAwith all coordinates 0, 1 or �1, we get thatnXi=1 �iai = 0and thus: X�i=1 ai = X�i=�1 ai:3.2.2 Practical results in small sizeAs was stated above, �nding a collision for Damg�ard's hash function amounts tocompute collisions for a knapsack compression function based on 128 numberswith 120 bits each. We develop this approach in appendix E where we showthat actual lattice reduction programs disclose such collisions. Thus, Damg�ardhash-function can be broken using lattice reduction.3.2.3 The size of pseudo-collisionsPseudo-collisions are collisions for the function obtained by replacing the originalknapsack-compression function by reducing it modulo some power of two. Thismeans that we will be working with modular knapsacks instead of usual knap-sacks. In this subsection and the next one, we use the same approach as in theLagarias-Odlyzko attack. More precisely, we �x a value � < 1, we let m = b�neand assume that the ais are random integers between 0 and 2m�1. Our aim is tocompute collisions for the resulting knapsack function, where reduction modulo2m is performed S(x) = nXi=1 xiai mod 2mBefore applying lattice reduction techniques, we need to estimate the mini-mum size of a collision, i.e. the minimum size of x�x0, where S(x) = S(x0). Thefollowing lemma provides a bound.Lemma 2 Let � be a �xed constant such that�+H2(�) > � > �17



With probability tending exponentially to 1 when n tends to in�nity, there existsa relation nXi=1 �iai = 0where all �is are 0, 1 or �1 and whereX j�ij � �nIn the above H2(�) denotes, as usual, �� log �� (1� �) log(1� �).Proof: Consider the family of all possible vectors with n coordinates, all of them0, 1 or �1, with size �n. This family has N members where N = 2�n  n�n !which, by classical estimates, is roughly 2�n2H2(�)n. For any such vector �, letS(�) = Pni=1 �iai. S(�) is a random variable depending on the random numbers ai.When � varies, we get (roughly) 2(�+H2(�))n random variables and it is easily seenthat, provided one discards one vector out of each pair f�;��g, these variables arepairwise independent and uniformly distributed over the integers f0; � � � 2m � 1g.Consider the characteristic function �� of the event S(�) = 0. We getN=2 pairwiseindependent random variables with mean value � = 12m and standard deviationq�(1� �). By Chebychev's inequality the probability thatX� �� < N�4is bounded by 8N� . Now if X� �� � N�4then, as soon as N�4 exceeds one, a suitable collision is obtained. To see this,observe that some value S(�) is zero and thereforeX�i=1 ai = X�i=�1 aiThe condition on N can be written N � 42�n and is satis�ed, for n large enough,under the hypothesis of the lemma. We get that a collision exists with probability� 1� 8N� . As N� is exponentially small, this concludes the proof of the lemma.Remarks.1) The careful reader will have noticed that the above proof is (consciously)
awed. Due to the fact that 2m is even, S(�) and S(�0) are not independent when� and �0 have the same domain. This involves a correction term for the standarddeviation � of X� ��18



The correction for �2 is bounded by�22H2(�)n22�n � N�2(���)nThis gives an opportunity to use the hypothesis � > � in order to conclude thatthe correction is negligible.2) Let L(� ) be the real number < 1=2 de�ned byL(� ) +H2(L(� )) = �Then, for � slightly greater than L(� ), the hypotheses of the lemma hold. Hencewe may sum up the lemma by stating that collisions of size L(� ) + o(1) almostalways exist.3.2.4 A provable mildly exponential attack for pseudo-collisionsFor the rest of the paper, we assume that we are granted access to a lattice re-duction oracle. As was already pointed out in section 2.4, this approach, providesa way to focus on the reduction of a given problem (here collision search) to alattice problem, without needing to worry about the state of the art in latticereduction algorithms. Recall that a lattice oracle outputs at no computing costa shortest vector of a given lattice. In practice, any call to the oracle will be re-placed either by the LLL algorithm [LLL82] or by a blockwise Korkine-Zolotarevalgorithm.In order to search collisions in the modular case, we could try to reduce thefollowing lattice, which is a variant of the one used above:B = 0BBBBBBB@ Ka1 Ka2 � � � Kan K2m1 0 � � � 0 00 1 � � � 0 0... ... . . . ... ...0 0 � � � 1 0 1CCCCCCCA :Unfortunately, a lattice oracle is not guaranteed to output a vector with allcoordinates 0, 1 or �1, even given the known bound for such a vector that comesfrom the previous lemma. In order to take advantage of this known bound, we�x a subset Y of f1; � � � ; ng with �n elements together with a function � from Yinto f�1;+1g. We then coalesce those ais with index in Y by settingb0 = Xi2Y �(i)ai mod 2mReindexing the other ais as b1, : : : , b(1��)n, we thus obtain a modular knapsackcontaining (1 � �)n + 1 random modular numbers b0, b1, : : : , b(1��)n. We can19



now associate the following lattice to the knapsack problem:B0 = 0BBBBBBB@ Kb0 Kb1 � � � Kb(1��)n K2m1 0 � � � 0 00 1 � � � 0 0... ... . . . ... ...0 0 � � � 1 0 1CCCCCCCA :We know that the lattice generated byB contains a short vector of size (L(� )+o(1))n with coordinates 0, 1 or �1, where L(� ) has been de�ned in the previoussection. If the restriction of this vector to Y matches up with �, then, grouping theindices in Y , we get a short vector ofB 0 of size (L(� )+���)n with coordinates 0, 1or �1. Using an argument similar to those in the Lagarias-Odlyzko paper [LO83],we can prove that, with probability tending exponentially to 1, a lattice oraclewill output such a vector, provided � exceeds some value depending on � . Detailsof the proof appear in appendix D. It turns out that, even though we can't givea close form for the minimum value of �, we obtain that � stays bounded by1=3000.We can now derive a provable mildly exponential algorithm, where we pickat random a subset of size �n and try all functions � from such a subset into 1sand �1s. This algorithm requests O(2�n) calls to the lattice reduction oracle. Itsprobability of success can be estimated as 2��n with� = �(1� �) log(1 � �) � � log � + (�� �) log(�� �)Computations show that the expected number of oracle calls 2(�+�)n remainsbounded by 2n=1000. Albeit exponential, this is much more e�cient than exhaus-tive search.References[Adl83] L. M. Adleman. On breaking generalized knapsack public key cryp-tosystems. In Proc. 15th ACM Symposium on Theory of Computing,pages 402{412, 1983.[Boy89] J. Boyar. Inferring sequences produced by a linear congruential gen-erator missing low-order bits. J. Cryptology, 1(3):177{184, 1989.[Bri85] E. F. Brickell. Breaking iterated knapsacks. In G. R. Blakley and D. C.Chaum, editors, Proceedings CRYPTO 84, pages 342{358. Springer,1985. Lecture Notes in Computer Science No. 196.[CJL+92] M. J. Coster, A. Joux, B. A. LaMacchia, A. Odlyzko, C.-P. Schnorr,and J. Stern. Improved low-density subset sum algorithms. Compu-tational Complexity, 2:11{28, 1992.20



[CJS91] Y. M. Chee, A. Joux, and J. Stern. The cryptanalysis of a new public-key cryptosystem based on modular knapsacks. In J. Feigenbaum,editor, Advances in Cryptology: Proceedings of Crypto'91, volume 576of LNCS, pages 204{212. Springer-Verlag, 1991.[CP91] P. Camion and J. Patarin. The knapsack hash-function proposed atcrypto'89 can be broken. In D. W. Davies, editor, Advances in Cryp-tology, Proceedings of Eurocrypt'91, volume 547 of Lecture Notes inComputer Science, pages 39{53, New York, 1991. Springer-Verlag.[Dam89] I. Damg�ard. A design principle for hash functions. In Advances inCryptology, Proceedings of Crypto'89, volume 435 of Lecture Notes inComputer Science, pages 25{37, New York, 1989. Springer-Verlag.[FHK+88] A. M. Frieze, J. Hastad, R. Kannan, J. C. Lagarias, and A. Shamir.Reconstructing truncated integer variables satisfying linear congru-ences. SIAM J. Computing, 17(2):262{280, April 1988.[Fri86] A. M. Frieze. On the Lagarias-Odlyzko algorithm for the subset sumproblems. SIAM J. Comput., 15(2):536{539, 1986.[Gau01] C.F. Gauss. Disquisitiones arithmeticae. Leipzig, 1801.[GJ94] L. Granboulan and A. Joux. A practical attack against knapsack basedhash functions. Proceedings of EUROCRYPT 94, 1994. to appear.[Her50] C. Hermite. Extraits de lettres de M. Hermite �a M. Jacobi sur dif-f�erents objets de la th�eorie des nombres, deuxi�eme lettre. J. ReineAngew. Math, 40:279{290, 1850.[Jou93] A. Joux. La R�eduction de R�eseaux en Cryptographie. PhD thesis,Ecole Polytechnique, Palaiseau, France, 1993.[JS91] A. Joux and J. Stern. Cryptanalysis of another knapsack cryptosys-tem. In Advances in Cryptology: Proceedings of AsiaCrypt'91, volume739 of Lecture Notes in Computer Science, pages 470{476. Springer-Verlag, 1991.[Knu69] D.E. Knuth. The Art of Computer Programming: Vol. 2, Seminumer-ical Algorithms. Addison-Wesley, 1969.[Knu80] D. E. Knuth. Deciphering a linear congruential encryption. TechnicalReport 024800, Stanford University, 1980.[KZ73] A. Korkine and G. Zolotarev. Sur les formes quadratiques. Math.Ann., 6:336{389, 1873. 21



[Lag73] L. Lagrange. Recherches d'arithm�etique, pages 265{312. Nouv. M�em.Acad., Berlin, 1773.[Len83] H. W. Lenstra. Integer programming with a �xed number of variables.Math. Oper. Res., 8:538{548, 1983.[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lov�asz. Factoring poly-nomials with rational coe�cients. Methematische Ann., 261:513{534,1982.[LO83] J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sumproblems. In Proceedings of the 24th IEEE Symposium on Foundationsof Computer Science, pages 1{10. IEEE, 1983.[MH78] R. Merkle and M. Hellman. Hiding information and signatures intrapdoor knapsacks. IEEE Trans. Inform. Theory, IT-24:525{530,September 1978.[Min10] H. Minkowski. Geometrie der Zahlen. Teubner, Leipzig, 1910.[Plu82] J. Plumstead. Inferring a sequence generated by a linear congruence.In Proceedings of the 23rd IEEE Symposium on Foundations of Com-puter Science, pages 153{159, Chicago, 1982. IEEE.[Sch87] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reductionalgorithms. Theoretical Computer Science, 53:201{224, 1987.[Sch88] C.-P. Schnorr. A more e�cient algorithm for lattice basis reduction.J. Algorithms, 9:47{62, 1988.[SE91] C.-P. Schnorr and M. Euchner. Lattice basis reduction: Improvedpractical algorithms and solving subset sum problems. In L. Budach,editor, Proceedings of Fundamentals of Computation Theory 91, vol-ume 529 of Lecture Notes in Computer Science, pages 68{85, NewYork, 1991. Springer-Verlag.[Sha82] A. Shamir. A polynomial-time algorithm for breaking the basicMerkle-Hellman cryptosystem. In Proceedings of the 23rd IEEE Sym-posium on Foundations of Computer Science, pages 145{152. IEEE,1982.[ST90] J. Stern and P. To�n. Cryptanalysis of a public-key cryptosystembased on approximations by rational numbers. In Advances in Cryp-tology: Proceedings of Eurocrypt'90, volume 473 of Lecture Notes inComp Sci, pages 313{317. Springer-Verlag, 1990.22



[Ste87] J. Stern. Secret linear congruential generators are not cryptographi-cally secure. In Proceedings of the 28th IEEE Symposium on Founda-tions of Computer Science, pages 421{426. IEEE, 1987.Appendix AIn section 3.1.1, we had to consider a lattice L(a) generated by the columns ofthe following matrix 0BBBBBBB@ 1 0 � � � 0a m � � � 0a2 0 m � � � 0... ...at�1 0 0 � � � m 1CCCCCCCAWe then claimed that a vector U belonging to L(a) and of size O(m�+o(1))was presumably equal to zero. When m is a squarefree integer, this is justi�edby the following:Theorem 1 Let t and � be given. There exist constants K(t), c(�; t) and anexceptional set E(m; �; t) of values of the multiplier a, such thati) j E(m; �; t) j� m1��ii) for any m > c(�; t) taken outside the exceptional set E(m; �; t), �(L) is boundedfrom below by K(t)m t�1t ��The proof if this theorem is implicit in [FHK+88]: since it is doubtful thatthe present appendix will be of any use to readers not familiar with this paper,we simply indicate how to extract the above result from the proof of lemma 3:2of [FHK+88]. Our lattice L(a) is exactly obtained from a lattice denoted L�a inthis proof by multiplying all vectors by m and our variable t stands for k. Withthese minor notational changes in mind, one can see that it is proved in [FHK+88]that, for m exceeding some constant c(�; t), the following holds:�(L�a) � 12t3�(t�1)m� 1t��This is precisely what we need.Following [FHK+88], the theorem can be extended to the case when m is�-squarefree i.e. whenm = fYi=1 peii and fYi=1 pei�1i � m�The resulting bound becomes K(t)m t�1t ����23



Following [FHK+88], again, the condition on m can be dropped when t = 3.We simply state the result.Theorem 2 Let � be given. There exist constant K(t), c(�) and an exceptionalset E(m; �) of values of the multiplier a, such thati) jE(m; �; t)j � c(�)m1��=2ii) for any m taken outside the exceptional set E(m; �), �(L) is bounded frombelow by Km 23��Appendix BIn this appendix, we investigate the probability that x1 � x0 is not prime to m.This appears in the analysis of our algorithm against Knuth's truncated linearcongruential generator. If this happens, a part of our argument fails: the oneby which we showed that the polynomial P (x), found at the end of the �rststep, vanishes at a modm. Fortunately, this is not too likely as shown by thefollowing.Theorem 3 Assume m is �-squarefree, then, if a and x0 are chosen indepen-dently and uniformly from the integers modm, then the probability that m andx1 � x0 are not relatively prime is bounded by 2m��1.Proof: We have x1 � x0 = (a� 1)x0 mod mNow, it is easily seen that x1 � x0 is not prime to m if either x0 or a � 1 hasnon-trivial gcd with m. Each event happens with probability Qfi=1 pei�1im � m��1Appendix CIn this appendix, we show that if L and ~L are full dimensional lattices, L asublattice of ~L and if random elements of L, say P1; � � � ; Pq are taken from aball of �xed (large) radius, then, as soon as q is large enough, L is, with highprobability, the lattice spanned by a basis of ~L together with P1; � � � ; Pq. Thisis related to the second part of our algorithm against Knuth's truncated linearcongruential generator, where we use a bunch of polynomials obtained from stepone in order to disclose the values of m and a. Although, this o�ers no proofof the success of our attack, this gives strong evidence that the algorithm willdisclose the correct secret values. Repeated experiments con�rm this heuristicanalysis.We let Li be the lattice generated by L and P1; � � � ; Pi. By volume estimates,we can see that the probability that Pi is taken within Li�1 is essentially equal to24



�(L)�(Li�1) (the word essentially coming from the fact that the ball from which thePis are drawn does not consist of an exact number of parallelepiped generatedby a basis of L). In in any case, since both determinants are integers, this isbounded by � = 1=2 + �, unless L = Li�1. When Pi lies in Li�1 or, equivalently,Li = Li�1, we say that i is a stationary index. We let k = log( �(~L�(L))). If, at leastk indices are non-stationary, then, since for every such index the determinant ofLi decreases by a multiplicative integer ratio, we get �(Lq) � �(~L)2k and therefore�(Lq) < 2�(L). This, in turn implies �(Lq) = �(L) since �(Lq) is a multipleof �(L) and �nally Lq = L. The following lemma bounds the probability thatthis equality does not hold.Lemma 3 There exists a constant �(�) such that whenever q is at least �(�)k,the probability that Lq 6= L is exponentially small w.r.t. kProof: If Lq 6= L, then, for each i � q, Li is di�erent from L and the numberof nonstationary indices is less than k. For a �xed subset S of f1; � � � ; qg, theprobability that this situation happens with S being the set of nonstationaryindices is at most � q�jSj. This gives for the requested probability � the upperbound kXi=0  qi ! � q�iUsing the classical upper estimate�qXi=0  qi ! � 2qH2(�)where H2(�) = �� log �� (1� �) log(1� �). we get that� � 2k[�H2( 1� )+(��1) log � ]Since the coe�cient of k in the exponent is equivalent to � log � when � tends toin�nity, the exponent is � �k when � exceeds some constant �(�).Appendix DIn this appendix, we clarify the link between the Lagarias-Odlyzko attack againstlow-density knapsacks and our cryptanalysis of knapsack hash-functions. TheLagarias-Odlyzko scenario deals with elements of a given knapsack together witha target sum, which is obtained from a proportion p of the elements. Thus,we know that in the Lagarias-Odlyzko lattice, there exists a short vector of sizeroughly ppn. The question amounts to the following: Is this vector the shortestone? If the answer is yes, then an oracle for lattice reduction successfully decrypts25



the cipher, otherwise the proof fails. We now follow the analysis of the Lagarias-Odlyzko attack that appears in [Fri86] and refer to this paper. The basic methodof [Fri86] is to count the number of integer points lying in the sphere of radiusppn centered at the origin and to claim that, for each such integer point, theprobability that it provides a short vector of the Lagarias-Odlyzko lattice is 2�n=dwhere d is the density of the knapsack. From this analysis, one can derive asu�cient condition ensuring that a call to a lattice oracle inverts the cipher withvery high probability. The condition is written:c(p) � 1dwhere c(p) is de�ned by c(p) = log2(h(z0)=zp0), with h(z) = 1 + 2P1k=1 zk2 and z0the unique solution in ]0; 1[ of zh0h (z) = p;In our attack against hash-functions, the analysis is similar but the parametersdi�er. More precisely, once we have guessed �n correct bits of a collision, asexplained in section 3.2.4, we obtain a short vector of size (L(� ) + ���)n whichbelongs to the lattice built from a knapsack consisting of (1��)n numbers with�n bits. Thus the values of the parameters are:p = L(� ) + �� �1� �and d = 1 � �� :The inequality c(p) � 1d can accordingly be written as� � G�(� ):Since � is as small as we want, we set � = 0, and compute G0.Clearly � < L(� ) < 1;thus p as well as c(p) are decreasing functions of �. Also, 1=d is an increasingfunction of � so that, for �xed � , the curves y = c(p) and y = 1=d with � rangingin the interval [0; L(� )] cross at a single point. The corresponding value of � atthe cross point is the required real number G0(� ). There is no closed form forG0(� ). Still, we have made numerical computations, and computed the curve� = G0(� ) as shown in �gure 3.2.4.In order to bound the expected number of oracle calls 2(�+�)n, we also com-puted � as a function of � for the limit case � = 0. The resulting curve is shownin �gure 3.2.4. 26
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Appendix EIn this section, we report on practical results showing that collisions in knapsackcompression functions with compression rate � = 1 can be actually found, atleast up to dimension 120. In order to obtain these results, we have devised aspeci�c lattice reduction algorithm that is very e�cient for the kind of latticesinvolved. This algorithm is a variation of Schnorr and Euchner (see [SE91])pruned blockwise Korkine-Zolotarev reduction. There are two slight changes inthe algorithm, which we brie
y discuss for the cognoscendi. Firstly, whenever the�rst vector in the lattice consists only of 0, 1 and �1, the program stops sinceit has found a collision. The second change is in the so-called enumeration step:during this enumeration, the program searches through the same space as in theoriginal algorithm but, instead of searching the whole space and choosing the newvector at the current position as the vector with shortest possible projection, theenumeration stops as soon as an improvement for the current position has beenfound. The following table gives the success rate and average running time forblocksize 50 and dimension varying from 50 to 95. The experiments were madeon an IBM RS6000 model 590.Dimension Success rate Av. Time50 10=10 3.7s55 10=10 8.9s60 10=10 11.5s65 10=10 19.4s70 10=10 26.9s75 10=10 44.6s80 10=10 76.5s85 10=10 225.2s90 8=10 234.2s95 8=10 461.4sDealing with dimension 120 is more di�cult since unsuccessful trials can ap-pear that waste a lot of time. We have bypassed this problem by limiting therunning time for each trial. Using this technique, we have obtained the followingresults: Time limit # trials # success rate1h 100 3 0.034h 20 3 0.15� 12h 30 8 0.27Remark: The experiments with time limit � 12h, were not made on the IBM,but on a Sun Sparc 10 model 51, which is roughly twice slower. The actual timelimit was 24h. 29


