
IDA PLUG-IN WRITING
IN

C/C++

[Version 1.0]

Copyright © 2005 Steve Micallef
steve@binarypool.com

mailto:steve@binarypool.com

Table of Contents
1. Introduction... 6

1.1 Why This Tutorial?... 6
1.2 What's Covered... 6
1.3 What's Not Covered.. 6
1.4 Knowledge Required... 6
1.5 Software Required... 7
1.6 Alternatives to C/C++.. 7
1.7 About This Document.. 7
1.8 Credits... 7
1.9 Further Reading.. 7

2. The IDA SDK.. 8
2.1 Installation... 8
2.2 Directory Layout.. 9
2.3 Header Files.. 9
2.4 Using the SDK... 10

3. Setting Up a Build Environment.. 11
3.1 Windows, Using Visual Studio... 11
3.2 Windows, Using Dev-C++ With GCC and MinGW... 12
3.3 Linux, Using GCC.. 12
3.4 A Plug-in Template.. 13
3.5 Configuring and Running Plug-ins... 14

4. Fundamentals.. 16
4.1 Core Types.. 16
4.2 Core Structures and Classes... 17

4.2.1 Meta Information... 17
4.2.2 Areas.. 17

4.2.2.1 The area_t Structure.. 18
4.2.2.2 The areacb_t Class.. 18

4.2.3 Segments and Functions.. 19
4.2.3.1 Segments... 19
4.2.3.2 Functions.. 20

4.2.4 Code Representation.. 21
4.2.4.1 Operand Types... 22
4.2.4.2 Operands.. 22
4.2.4.3 Mnemonics... 23
4.2.4.4 Instructions... 23

4.2.5 Cross Referencing.. 24
4.2.5.1 The xrefblk_t Structure... 24
4.2.5.2 Code .. 25
4.2.5.3 Data.. 25

4.3 Byte Flags... 26
4.4 The Debugger... 27

4.4.1 The debugger_t Struct.. 28
4.4.2 Registers... 28
4.4.3 Breakpoints... 29
4.4.4 Tracing.. 30
4.4.5 Processes and Threads.. 32

4.5 Event Notifications... 32
4.5.1 Receiving Notification... 33
4.5.2 UI Event Notifications.. 34

4.5.3.1 Low Level Events... 35
4.5.3.2 High Level Event Notifications.. 36
4.5.3.3 Function Result Notifications.. 37

4.6 Strings... 38

5. Functions... 40
5.1 Common Function Replacements... 40
5.2 Messaging... 40

5.2.1 msg... 41
5.2.2 info.. 41
5.2.3 warning... 41
5.2.4 error.. 41

5.3 UI Navigation... 42
5.3.1 get_screen_ea.. 42
5.3.2 jumpto... 42
5.3.3 get_cursor... 42
5.3.4 get_curline.. 43
5.3.5 read_selection... 43
5.3.6 callui.. 43
5.3.7 askaddr... 44
5.3.8 AskUsingForm_c... 44

5.4 Entry Points... 45
5.4.1 get_entry_qty.. 45
5.4.2 get_entry_ordinal.. 45
5.4.3 get_entry... 46
5.4.4 get_entry_name.. 46

5.5 Areas... 46
5.5.1 get_area.. 47
5.5.2 get_area_qty... 47
5.5.3 getn_area.. 48
5.5.4 get_next_area... 48
5.5.5 get_prev_area... 49

5.6 Segments.. 49
5.6.1 get_segm_qty... 49
5.6.2 getnseg... 49
5.6.3 get_segm_by_name... 50
5.6.4 getseg... 50
5.6.5 get_segm_name (IDA 4.8).. 51
5.6.6 get_segm_name (IDA 4.9).. 51

5.7 Functions... 51
5.7.1 get_func_qty... 52
5.7.2 get_func.. 52
5.7.3 getn_func.. 52
5.7.4 get_func_name... 53
5.7.5 get_next_func... 53
5.7.6 get_prev_func... 54
5.7.7 get_func_comment... 54

5.8 Instructions.. 54
5.8.1 generate_disasm_line... 54
5.8.2 ua_ana0.. 55
5.8.3 ua_code.. 55
5.8.4 ua_outop... 56
5.8.5 ua_mnem.. 56

5.9 Cross Referencing... 57
5.9.1 first_from... 58
5.9.2 first_to... 58
5.9.3 next_from.. 59
5.9.4 next_to.. 59

5.10 Names... 60
5.10.1 get_name.. 60
5.10.2 get_name_ea.. 60
5.10.3 get_name_value... 61

5.11 Searching.. 62
5.11.1 find_text (IDA 4.9 only)... 62
5.11.2 find_binary.. 63

5.12 IDB.. 64
5.12.1 open_linput... 64
5.12.2 close_linput... 64
5.12.3 load_loader_module... 65
5.12.4 load_binary_file... 65
5.12.5 gen_file... 66
5.12.6 save_database.. 67

5.13 Flags.. 67
5.13.1 getFlags.. 68
5.13.2 isEnabled.. 68
5.13.3 isHead... 68
5.13.4 isCode... 69
5.13.5 isData.. 69
5.13.6 isUnknown.. 70

5.14 Data... 71
5.14.1 get_byte.. 71
5.14.2 get_many_bytes.. 71
5.14.3 patch_byte.. 72
5.14.4 patch_many_bytes.. 72

5.15 I/O.. 73
5.15.1 fopenWT... 73
5.15.2 openR... 73
5.15.3 ecreate.. 74
5.15.4 eclose... 74
5.15.5 eread... 74
5.15.6 ewrite.. 75

5.16 Debugging ... 75
5.16.0 A Note on Requests.. 76
5.16.1 run_requests... 76
5.16.2 get_process_state... 76
5.16.3 get_process_qty.. 77
5.16.4 get_process_info... 77
5.16.5 start_process *.. 78
5.16.6 continue_process *... 78
5.16.7 suspend_process *... 79
5.16.8 attach_process *... 79
5.16.9 detach_process *.. 80
5.16.10 exit_process *... 80
5.16.11 get_thread_qty.. 80
5.16.12 get_reg_val... 81
5.16.13 set_reg_val *... 81
5.16.14 invalidate_dbgmem_contents... 82
5.16.15 invalidate_dbgmem_config... 82
5.16.16 run_to *... 83
5.16.17 step_into *... 83
5.16.18 step_over *.. 84
5.16.19 step_until_ret *.. 84

5.17 Breakpoints ... 85
5.17.1 get_bpt_qty... 85
5.17.2 getn_bpt.. 85
5.17.3 get_bpt.. 86
5.17.4 add_bpt *.. 86
5.17.5 del_bpt *.. 87
5.17.6 update_bpt.. 87

5.17.7 enable_bpt *.. 88
5.18 Tracing.. 89

5.18.1 set_trace_size... 89
5.18.2 clear_trace *.. 89
5.18.3 is_step_trace_enabled.. 89
5.18.4 enable_step_trace *.. 90
5.18.5 is_insn_trace_enabled.. 90
5.18.6 enable_insn_trace *.. 90
5.18.7 is_func_trace_enabled.. 91
5.18.8 enable_func_trace *.. 91
5.18.9 get_tev_qty... 91
5.18.10 get_tev_info.. 92
5.18.11 get_insn_tev_reg_val.. 92
5.18.12 get_insn_tev_reg_result.. 93
5.18.13 get_call_tev_callee... 94

5.19 Strings... 95
5.19.1 refresh_strlist.. 95
5.20.2 get_strlist_qty.. 96
5.19.3 get_strlist_item.. 96

5.20 Miscellaneous.. 96
5.20.1 tag_remove... 97
5.20.2 open_url.. 97
5.20.3 call_system... 97
5.20.4 idadir... 98
5.20.5 getdspace... 98
5.20.6 str2ea.. 99
5.20.7 ea2str.. 99
5.20.8 get_nice_colored_name.. 99

6 Examples.. 101
6.1 Looking for Calls to sprintf, strcpy, and sscanf.. 101
6.2 Listing Functions Containing MOVS et al.. 103
6.3 Auto-loading DLLs Into the IDA Database... 105
6.4 Bulk Breakpoint Setter & Saver... 107
6.5 Selective Tracing (Method 1)... 110
6.6 Selective Tracing (Method 2)... 112
6.7 Binary Copy & Paste... 114

1. Introduction

1.1 Why This Tutorial?

After spending a lot of time going through the header files in the IDA SDK as well as looking at
the source to other people’s plug-ins, I figured there should be an easier way to get started with
writing IDA plug-ins. Although the header file commentary is amazingly thorough, I found it a little
difficult navigating and finding things when I needed them without a lot of searching and trial-and-
error. I thought that I'd write this tutorial to try and help those getting started as well as hopefully
provide a quick reference point for people developing plug-ins. I've also dedicated a section to
setting up a development environment which should make the development process quicker to
get into.

1.2 What's Covered

This tutorial will get you started with writing IDA plug-ins, beginning with an introduction to the
SDK, followed by setting up a development/build environment on various platforms. You'll then
gain a good understanding of how various classes and structures are used, followed by usage of
some of the more widely used functions exported. Finally, I'll show some examples of using the
IDA API for basic things like looping through functions, to hooking into the debugger and
manipulating the IDA database (IDB). After reading this, you should be able to apply the
knowledge gained to write your own plug-ins and hopefully share them with the community.

1.3 What's Not Covered

I'm focusing on x86 assembly because it's what I have most experience in, although most of the
material presented should cover any architecture supported by IDA (which is practically all of
them in the Advanced version). Also, if you want a comprehensive reference to all IDA functions, I
suggest looking through the header files.

This tutorial is focused more on "read only" functionality within the SDK, rather than functions for
adding comments, correcting errors, defining data structures, and so on. These sorts of things are
a big part of the SDK, but aren't covered here in an attempt to keep this tutorial at a managable
size.

I have intentionally left out netnodes from this tutorial, as well as many struct/class members
because the IDA SDK is massive, and contains a lot of things for specialised purposes – a tutorial
cannot cover everything. If there is something you feel really should be in here, drop me a line
and I'll probably include it in the next version if it isn't too specialised.

1.4 Knowledge Required

First and foremost, you must know how to use IDA to the point where you can comfortably
navigate disassembled binaries and step through the debugger. You should be equipped with a
thorough knowledge of the C/C++ language as well as x86 assembly. C++ knowledge is quite
important because the SDK is pretty much all C++. If you don't know C++ but know C, you should
at least understand general OOP concepts like classes, objects, methods and inheritance.

1.5 Software Required

To write and run IDA plug-ins, you will need the IDA Pro disassembler 4.8 or 4.9, the IDA SDK
(which, as a licensed user of IDA, you get for free from http://www.datarescue.com) and a C/C++
compiler with related tools (Visual Studio, GCC toolset, Borland, etc).

Notes have been added throughout the tutorial where things change in 4.9. Also, as of 4.9, the
SDK freezes, and so interfaces to 4.9 functions won't change, and plug-ins written for 4.9 (even in
binary form) will work with future versions.

1.6 Alternatives to C/C++

If C is not your thing, take a look at IDAPython, which has all the functionality the C++ API offers
in the higher-level language of Python. Check out http://d-dome.net/idapython/ for details. There
is a tutorial written on using IDAPython by Ero Carrera at http://dkbza.org/idapython_intro.html,
which is obviously more applicable than this text.

There was also an article recently written about using VB6 and C# to write IDA plugins – check it
out here: http://www.openrce.org/articles/full_view/13.

1.7 About This Document

If you have any comments, suggestions or if you notice any errors, please contact me, Steve
Micallef, at steve@binarypool.com. If you really feel like you've learnt something from this, I'd also
appreciate an email, just to make this process worth while :-)

As the SDK continues to grow, this document will be updated gradually over time. You will always
be able to obtain the latest copy at http://www.binarypool.com/idapluginwriting/.

1.8 Credits

In no particular order, I'd like to thank the following people for proof reading as well as providing
encouragement and feedback for this tutorial.

Ilfak Guilfanov, Pierre Vandevenne, Eric Landuyt, Vitaly Osipov, Scott Madison, Andrew Griffiths,
Thorsten Schneider and Pedram Amini.

1.9 Further Reading

At the time of writing, the only other written material on IDA plug-ins is a tutorial on using the
universal un-packer plug-in in IDA 4.9, which contains information on how it was written and how
it works. It can be found at http://www.datarescue.com/idabase/unpack_pe/unpacking.pdf. If you
get stuck while writing a plug-in, you can always ask for help on the Datarescue Bulletin Board
(http://www.datarescue.com/cgi-local/ultimatebb.cgi), where even though the SDK is officially
unsupported, someone from Datarescue (or one of the many IDA users) is likely to help you out.

Another great resource is http://www.openrce.org/, where you'll find not only some great articles
on reverse engineering, but tools, plug-ins and documentation too. There are also a lot of
switched-on people on this board, who will most likely be able to help you with almost any IDA or
general reverse engineering problem.

http://www.openrce.org/
http://www.datarescue.com/cgi-local/ultimatebb.cgi
http://www.datarescue.com/idabase/unpack_pe/unpacking.pdf
http://www.binarypool.com/idapluginwriting/
mailto:steve@binarypool.com
http://www.openrce.org/articles/full_view/13
http://dkbza.org/idapython_intro.html
http://d-dome.net/idapython/
http://www.datarescue.com/

2. The IDA SDK
IDA is a fantastic disassembler and more recently comes with a variety of debuggers too. While
IDA alone has an amazing amount of functionality, there are always things you'll want to
automate or do in some particular way that IDA doesn't support. Thankfully, the guys at
Datarescue have released the IDA SDK – a way for you to hook your own desired functionality
into IDA.

There are four types of modules you can write for IDA using the IDA SDK, plug-in modules being
the subject of this tutorial:

Module Type Purpose
Processor Adding support for different processor architectures. Also known as

IDP (IDa Processor) modules.

Plug-in Extending functionality in IDA.

Loader Adding support for different executable file formats.

Debugger Adding support for debugging on different platforms and/or interacting
with other debuggers / remote debugging.

From here onwards, the term "plug-in" will be used in place of "plug-in module", unless otherwise
stated.

The IDA SDK contains all the header and library files you need to write an IDA plug-in. It supports
a number of compilers on both Linux and Windows platforms, and also comes with an example
plug-in that illustrates a couple of basic features available.

Whether you're a reverse engineer, vulnerability researcher, malware analyst, or a combination of
them, the SDK gives you a tremendous amount of power and flexibility. You could essentially
write your own debugger/disassembler using it, and that's just scratching the surface. Here's a
tiny sample of some very straight-forward things you could do with the SDK:

➢Automate the analysis and unpacking of packed binaries.

➢Automate the process of finding the use of particular functions (for example,

LoadLibrary(), strcpy(), and whatever else you can think of.)

➢Analyse program and/or data flow, looking for things of interest to you.

➢Binary diff'ing.

➢Write a de-compiler.

➢The list goes on..

To see a sample of what some people have written using the IDA SDK, check out the IDA Palace
website, at http://home.arcor.de/idapalace/.

2.1 Installation

This is simple. Once you obtain the SDK (which should be in the form of a .zip file), unzip it to a
location of your choice. My preference is creating an sdk directory under the IDA installation and
putting everything in there, but it doesn't really matter.

http://home.arcor.de/idapalace/

2.2 Directory Layout

Rather than go through every directory and file in the SDK, I'm going to go over the directories
relevant to writing plug-ins, and what's in them.

Directory Contains
/ Some makefiles for different environments as well as the readme.txt

which you should read to get a quick overview of the SDK, in particular
anything that might've changed in recent versions.

include/ Header files, grouped into areas of functionality. I recommend going
through every one of these files and jotting down functions that look
applicable to your needs once you have gone through this tutorial.

libbor.wXX/ IDA library to link against when compiling with the Borland C compiler
libgccXX.lnx/ IDA library to link against when compiling with GCC under Linux
libgcc.wXX/ IDA library to link against when compiling with GCC under Windows
libvc.wXX/ IDA library to link against when compiling with Visual C++ under

Windows
plugins/ Sample plug-ins

XX is either 32(bit) or 64(bit), which will depend on the architecture you’re running on.

2.3 Header Files

Of the fifty header files in the include directory, I found the following to be most relevant when
writing plug-ins. If you want information on all the headers, look at readme.txt in the SDK root
directory, or in the header file itself. This listing is just here to provide a quick reference point
when looking for certain functionality – more detail will be revealed in the following sections.

File(s) Contains
area.hpp area_t and areacb_t classes, which represent “areas” of code,

which will be covered in detail later on
bytes.hpp Functions and definitions for dealing with individual bytes within a

disassembled file
dbg.hpp & idd.hpp Debugger classes and functions
diskio.hpp & fpro.h IDA equivalents to fopen(), open(), etc. as well as some misc.

file operations (getting free disk space, current working directory,
etc.)

entry.hpp Functions for getting and manipulating executable entry point
information

frame.hpp Functions for dealing with the stack, function frames, local variables
and labels

funcs.hpp func_t class and pretty much everything function related

ida.hpp idainfo struct, which holds mostly meta information about the file
being disassembled

File(s) Contains
kernwin.hpp Functions and classes for interacting with the IDA user interface
lines.hpp Functions and definitions that deal with disassembled text, colour

coding, etc.
loader.hpp Mostly functions for loading files into and manipulating the IDB
name.hpp Functions and definitions for getting and setting names of bytes

(variable names, function names, etc.)
pro.h Contains a whole range of misc. definitions and functions
search.hpp Various functions and definitions for searching the disassembled

file for text, data, code and more.
segment.hpp segment_t class and everything for dealing with binary

segments/sections
strlist.hpp string_info_t structure and related functions for representing

each string in IDA's string list.
ua.hpp insn_t, op_t and optype_t classes representing instructions,

operands and operand types respectively as well as functions for
working with the IDA analyser

xref.hpp Functions for dealing with cross referencing code and data
references

2.4 Using the SDK

Generally speaking, any function within a header file that's prefixed with ida_export is available
for your use, as well as global variables prefixed with ida_export_data. The rule of thumb is to
stay away from lower level functions (these are indicated in the header files) and stick to using
the higher level interfaces provided. Any defined class, struct and enum is available for your use.

3. Setting Up a Build Environment

Note for Borland users: The only compiler supported by the IDA SDK that isn't covered in this
section is Borland's. You should read the install_cb.txt and makeenv_br.mak in the root
of the SDK directory to determine the compiler and linker flags necessary.

Before you start coding away it's best to have a proper environment set up to facilitate the
development process. The more popular environments have been covered, so apologies if yours
isn't. If you're already set up, feel free to skip to the next section.

3.1 Windows, Using Visual Studio

The version of Visual Studio used for this example is Visual Studio.NET 2003, but almost
everything should be applicable to later and even some earlier versions.

Once you have Visual Studio running, close any other solutions and/or projects you might have
open; we want a totally clean slate.

1 Go to File->New->Project… (Ctrl-Shift-N)

2 Expand the Visual C++ Projects folder, followed by the Win32 sub-folder, and then
select the Win32 Project icon. Name the project whatever you like and click OK.

3 The Win32 Application Wizard should then appear, click the Application Settings
tab and make sure Windows Application is selected, and then tick the Empty
Project checkbox. Click Finish.

4 In the Solutions Explorer on the right hand side, right click on the Source Files
folder and go to Add->Add New Item...

5 Select the C++ File (.cpp) icon and name the file appropriately. Click Open. Repeat
this step for any other files you want to add to the project.

6 Go to Project->projectname Properties...
7 Change the following settings (some have been put there to reduce the size of the

resulting plug-in, as VS seems to bloat the output file massively):

Configuration Properties->General: Change Configuration Type to
Dynamic Library (.dll)
C/C++->General: Set Detect 64-bit Portability Issue checks to No
C/C++->General: Set Debug Information Format to Disabled
C/C++->General: Add the SDK include path to the Additional Include
Directories field. e.g. C:\IDA\SDK\Include
C/C++->Preprocessor: Add __NT__;__IDP__ to Preprocessor Definitions
C/C++->Code Generation: Turn off Buffer Security Check, and Basic
Runtime Checks, set Runtime Library to Single Threaded
C/C++->Advanced: Calling Convention is __stdcall
Linker->General: Change Output File from a .exe to a .plw in the IDA plugins
directory
Linker->General: Add the path to your libvc.wXX to Additional Library
Directories. e.g. C:\IDA\SDK\libvc.w32
Linker->Input: Add ida.lib to Aditional Dependencies
Linker->Debugging: No to Generate Debug Info
Linker->Command Line: Add /EXPORT:PLUGIN

Build Events->Post-Build Event: Set Command-line to your idag.exe to start
IDA after each successful build (Optional)

Click OK
8 Go back to step 6, but before moving on to step 7, change the Configuration drop-

down from Active(Debug) to Release and repeat the settings changes in step 7. Click
OK

9 Move on to section 3.4

3.2 Windows, Using Dev-C++ With GCC and MinGW

You can obtain a copy of Dev-C++, GCC and MinGW as one package from
http://www.bloodshed.net/dev/devcpp.html. Installing and setting it up is beyond the scope of this
tutorial, so from here on, it'll be assumed that it's all in working order.

As before, start up Dev-C++ and ensure no project or other files are open – we want a clean
slate.

1 Go to File->New Project, choose Empty Project, make sure C++ Project is
selected and give it any name you wish, click OK

2 Choose a directory to save the project file, this can be anywhere you wish.

3 Go to Project->New File, this will hold the source code to your plug-in. Repeat this
step for any other files you want to add to the project.

4 Go to Project->Project Options, click on the Parameters tab.

5 Under C++ compiler, add:
-DWIN32 -D__NT__ -D__IDP__ -v -mrtd

6 Under Linker, add:
../path/to/your/sdk/libgcc.wXX/ida.a -Wl,--dll -shared
Just a note here - it's usually best to start with ../, because msys seems to get confused
with just /, and tries to reference it from the root of the msys directory.

7 Click on the Directories tab, and Include Directories sub-tab. Add the path to
your IDA SDK include directory to the list.

8 Click on the Build Options tab, set the output directory to your IDA plugins
directory, and Override the output filename to be a .plw file. Click OK.

9 Move on to section 3.4

3.3 Linux, Using GCC

Unlike Windows plug-ins, which end in .plw, Linux plug-ins need to end in .plx. Also, in this
example, there is no GUI IDE, so rather than go through a step-by-step process, I'll just show the
Makefile you need to use. The below example probably isn't the cleanest Makefile, but it
should work.

In this example, the IDA installation is in /usr/local/idaadv, and the SDK is located under
the sdk sub-directory. Put the below Makefile into the same directory where the source to your

http://www.bloodshed.net/dev/devcpp.html

plug-in will be. You'll also need to copy the plugin.script file from the sdk/plugins
directory into the directory with your source and Makefile.

Set SRC below to the source files that make up your plug-in, and OBJS to the object files they will
be compiled to (same filename, just replace the extension with a .o).

SRC=file1.cpp file2.cpp
OBJS=file1.o file2.o
CC=g++
LD=g++
CFLAGS=-D__IDP__ -D__PLUGIN__ -c -D__LINUX__ \

-I/usr/local/idaadv/sdk/include $(SRC)
LDFLAGS=--shared $(OBJS) -L/usr/local/idaadv -lida \

--no-undefined -Wl,--version-script=./plugin.script

all:
 $(CC) $(CFLAGS)
 $(LD) $(LDFLAGS) -o myplugin.plx
 cp myplugin.plx /usr/local/idaadv/plugins

To compile your plug-in, make will do the job and copy it into the IDA plugins directory for you.

3.4 A Plug-in Template

The way IDA "hooks in" to your plug-in is via the PLUGIN class, and is typically the only thing
exported by your plug-in (so that IDA can use it). Also, the only files you need to #include that
are essential for the most basic plug-in are ida.hpp, idp.hpp and loader.hpp.

The below template should serve as a starter for all your plug-in writing needs. If you paste it into
a file in your respective development environment, it should compile, and when run in IDA
(Edit->Plugins->pluginname, or the shortcut defined) , it will insert the text "Hello World"
into the IDA Log window.

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>

int IDAP_init(void)
{

// Do checks here to ensure your plug-in is being used within
// an environment it was written for. Return PLUGIN_SKIP if the
// checks fail, otherwise return PLUGIN_KEEP.

}

void IDAP_term(void)
{

// Stuff to do when exiting, generally you'd put any sort
// of clean-up jobs here.

 return;
}

// The plugin can be passed an integer argument from the plugins.cfg
// file. This can be useful when you want the one plug-in to do
// something different depending on the hot-key pressed or menu
// item selected.

void IDAP_run(int arg)
{

// The "meat" of your plug-in
msg("Hello world!");

 return;
}

// There isn't much use for these yet, but I set them anyway.
char IDAP_comment[] = "This is my test plug-in";
char IDAP_help[] = "My plugin";

// The name of the plug-in displayed in the Edit->Plugins menu. It can
// be overridden in the user's plugins.cfg file.
char IDAP_name[] = "My plugin";

// The hot-key the user can use to run your plug-in.
char IDAP_hotkey[] = "Alt-X";

// The all-important exported PLUGIN object
plugin_t PLUGIN =
{
 IDP_INTERFACE_VERSION, // IDA version plug-in is written for
 0, // Flags (see below)
 IDAP_init, // Initialisation function
 IDAP_term, // Clean-up function
 IDAP_run, // Main plug-in body
 IDAP_comment, // Comment – unused
 IDAP_help, // As above – unused
 IDAP_name, // Plug-in name shown in

// Edit->Plugins menu
 IDAP_hotkey // Hot key to run the plug-in
};

You can usually get away without setting the flags attribute (second from the top) in the PLUGIN
structure unless it's a debugger module, or you want to do something like hide it from the Edit-
>Plugins menu. See loader.hpp for more information on the possible flags you can set.

The above template is also available at http://www.binarypool.com/idapluginwriting/template.cpp.

3.5 Configuring and Running Plug-ins

This is the easiest of all – copy the compiled plug-in file (make sure it ends in .plw for Windows
or .plx for Linux) into the IDA plugins directory and IDA will load it automatically at start-up.

Make sure your plug-in can load up all of its DLLs and shared libraries at start-up by ensuring
your environment is set up correctly (LD_LIBRARY_PATH under Linux, for example). You can
start IDA with the -z20 flag, which will enable plug-in debugging. This will usually indicate if there
are errors during the loading process.

If you put code into the IDAP_init() function, it will get executed when IDA is loading the first
file for disassembly, otherwise, if you put code in the IDAP_run() function, it will execute when
the user presses the hot-key combination or goes through the Edit->Plugins menu.

http://www.binarypool.com/idapluginwriting/template.cpp

The user can override a few of the PLUGIN settings in the plugins.cfg file (like the name and
hot-key), but that's nothing for you to really concern yourself with. The plugins.cfg file can
also be used to pass arguments to your plug-in at start-up.

4. Fundamentals
There are quite a few different classes, data structures and types within the IDA SDK, some more
widely used than others. The aim of this section is to introduce you to them, as they provide great
insight into what IDA knows about a disassembled file, and should get you thinking about the
possibilities of what can be done with the SDK.

Some of these classes and structures are quite large, with many member variables and
methods/functions. In this section, it's mostly the variables that are covered, whereas the
methods are covered in Chapter 5 - Functions. Some of the below code commentary is taken
straight from the SDK, some is my commentary, and some is a combination of the two.
#defines have, in some cases, been included beneath various members, the same way as it's
been done in the SDK. I left these in because it's a good illustration of the valid values a member
variable can have.

Important note about the examples: Code from any of the examples in this section should be
put into the IDAP_run() function from the template in section 3.4, unless otherwise stated.

4.1 Core Types

The following types are used all throughout the SDK and this tutorial, so it's important that you are
able to recognise what they represent.

All the below types are unsigned long integers, and unsigned long long integers on 64-bit
systems. They are defined in pro.h.

Type Description
ea_t Stands for 'Effective Address', and represents pretty much any address within IDA

(memory, file, limits, etc.)
sel_t Segment selectors, as in code, stack and data segment selectors
uval_t Used for representing unsigned values
asize_t Typically used for representing the size of something, usually a chunk of memory

The following are signed long integers, and signed long long integers on 64-bit systems. They are
also defined in pro.h.

Type Description
sval_t Used for representing signed values
adiff_t Represents the difference between two addresses

Finally, there are a couple of definitions worth noting; one of these is BADADDR, which represents
an invalid or non-existent address which you will see used a lot in loops for detecting the end of a
readable address range or structure. You will also see MAXSTR used in character buffer
definitions, which is 1024.

4.2 Core Structures and Classes

4.2.1 Meta Information

The idainfo struct, which is physically stored in the IDA database (IDB), holds what I refer to as
'meta' information about the initial file loaded for disassembly in IDA. It does not change if more
files are loaded, however. Here are some of the more interesting parts of it, as defined in
ida.hpp:

struct idainfo
{
 ...
 char procName[8]; // Name of processor IDA is running on

// ("metapc" = x86 for example)
 ushort filetype; // The input file type. See the

// filetype_t enum – could be f_ELF,
// f_PE, etc.

 ea_t startSP; // [E]SP register value at the start of
 // program execution
 ea_t startIP; // [E]IP register value at the start of
 // program execution
 ea_t beginEA; // Linear address of program entry point,
 // usually the same as startIP
 ea_t minEA; // First linear address within program
 ea_t maxEA; // Last linear address within the

// program, excluding maxEA
...
};

inf is a globally accessible instance of this structure. You will often see checks done against
inf.procName within the initialisation function of a plug-in, checking that the machine
architecture is what the plug-in was written to handle.

For example, if you wrote a plug-in to only handle PE and ELF binary formats for the x86
architecture, you could add the following statement to your plug-in's init function (IDAP_init
from our plug-in template in section 3.4).

// "metapc" represents x86 architecture
if(strncmp(inf.procName, "metapc", 8) != 0

|| inf.filetype != f_ELF && inf.filetype != f_PE))
{
 error("Only PE and ELF binary type compiled for the x86 "

"platform is supported, sorry.");
return PLUGIN_SKIP; // Returning PLUGIN_SKIP means this plug-in

// won't be loaded
}
return PLUGIN_KEEP; // Keep this plug-in loaded

4.2.2 Areas

Before going into detail on the “higher level” classes for working with segments, functions and
instructions, let's have a look at two key concepts; namely areas and area control blocks.

4.2.2.1 The area_t Structure
An area is represented by the area_t struct, as defined in area.hpp. Based on commentary in
this file, strictly speaking:

"Areas" consists of separate area_t instances. An area is a non-empty contiguous range of
addresses (specified by it start and end addresses, end address is excluded) with characteritics.
For example, segments are set of areas.

As you can see from the below excerpt from the area_t definition, it is defined by a start address
(startEA) and end address (endEA). There are also a couple of functions to see if an area
contains an address, if an area is empty, and to return the size of the area. A segment is an area,
but functions are too, which means areas can also encompass other areas.

struct area_t
{
 ...
 ea_t startEA;
 ea_t endEA; // endEA address is excluded from

 // the area
 bool contains(ea_t ea) const { return startEA <= ea && endEA > ea; }
 bool empty(void) const { return startEA >= endEA; }
 asize_t size(void) const { return endEA - startEA; }
 ...
};

Technically speaking, saying that functions and segments are areas, is to say that the func_t
and segment_t classes inherit from the area_t struct. This means that all the variables and
functions in the area_t structure are applicable to func_t and segment_t (so for example,
segment_t.startEA and func_t.contains() are valid). func_t and segment_t also
extend the area_t struct with their own specialized variables and functions. These will be
covered later however.

A few other classes that inherit from and extend area_t are as follows:

Type (file) Description
hidden_area_t (bytes.hpp) Hidden areas where code/data is replaced and

summarised by a description that can be expanded to view
the hidden information

regvar_t (frame.hpp) Register name replacement with user-defined names
(register variables)

memory_info_t (idd.hpp) A chunk of memory (when using the debugger)
segreg_t (srarea.hpp) Segment register (CS, SS, etc. on x86) information

4.2.2.2 The areacb_t Class
An area control block is represented by the areacb_t class, also defined in area.hpp. The
commentary for it, shown below, is slightly less descriptive, but doesn't really need to be anyway:

"areacb_t" is a base class used by many parts of IDA

The area control block class is simply a collection of functions that are used to operate on areas.
Functions include get_area_qty(), get_next_area() and so on. You probably won't find
yourself using any of these methods directly, as when dealing with functions for example, you're

more likely to use func_t's methods, and the same rule applies to other classes that inherit from
area_t.

There are two global instances of the areacb_t class, namely segs (defined in segment.hpp)
and funcs (defined in funcs.hpp), which represent all segments and functions, respectively,
within the currently disassembled file(s). You can run the following to get the number of segments
and functions within the currently disassembled file(s) in IDA:

#include <segment.hpp>
#include <funcs.hpp>

msg("Segments: %d, Functions: %d\n",
segs.get_area_qty(),
funcs.get_area_qty());

4.2.3 Segments and Functions

As mentioned previously, the segment_t and func_t classes both inherit from and extend the
area_t struct, which means all the area_t variables and functions are applicable to these
classes and they also bring some of their own functionality into the mix.

4.2.3.1 Segments
The segment_t class is defined in segment.hpp. Here are the more interesting parts of it.

class segment_t : public area_t
{
public:
 uchar perm; // Segment permissions (0-no information). Will

// be one or a combination of the below.
#define SEGPERM_EXEC 1 // Execute
#define SEGPERM_WRITE 2 // Write
#define SEGPERM_READ 4 // Read
 uchar type; // Type of the segment. This will be one of the below.
#define SEG_NORM 0 // Unknown type, no assumptions
#define SEG_XTRN 1 // Segment with 'extern' definitions,
 // where no instructions are allowed
#define SEG_CODE 2 // Code segment
#define SEG_DATA 3 // Data segment
#define SEG_NULL 7 // Zero-length segment
#define SEG_BSS 9 // Uninitialized segment
...
};

SEG_XTRN is a special (i.e. not physically existent) segment type, created by IDA upon
disassembly of a file, whereas others represent physical parts of the loaded file. For a typical
executable file loaded in IDA for example, the value of type for the .text segment would be
SEG_CODE and the value of perm would be SEGPERM_EXEC | SEGPERM_READ.

To iterate through all the segments within a binary, printing the name and address of each one
into IDA's Log window, you could do the following:

#include <segment.hpp>

// This will only work in IDA 4.8, because get_segm_name() changed

// in 4.9. See the Chapter 5 for more information.

// get_segm_qty() returns the number of total segments
// for file(s) loaded.
for (int s = 0; s < get_segm_qty(); s++)
{
 // getnseg() returns a segment_t struct for the segment
 // number supplied
 segment_t *curSeg = getnseg(s);
 // get_segm_name() returns the name of a segment
 // msg() prints a message to IDA's Log window
 msg("%s @ %a\n", get_segm_name(curSeg), curSeg->startEA);
}

Understanding what the functions above do isn't important at this stage – they'll be explained in
more detail under Chapter 5 - Functions.

4.2.3.2 Functions
A function is represented by the func_t class, which is defined in funcs.hpp, but before going
into detail on the func_t class, it's probably worth shedding some light on function chunks,
parents and tails.

Functions are typically contiguous blocks of code within the binary being analysed, and are
usually represented as a single chunk. However, there are times when optimizing compilers move
code around, and so functions are broken up into multiple chunks with code from other functions
separating them. These loose chunks are known as "tails", and the chunks that reference code
(by a JMP or something similar) within the tails are known as "parents". What makes things a little
confusing is that all are still of the func_t type, and so you need to check the flags member of
func_t to determine if a func_t instance is a tail or parent.

Below is highly stripped-down version of the func_t class, along with some slightly edited
commentary taken from funcs.hpp.

class func_t : public area_t
{
public:
...
 ushort flags; // flags indicating the type of function
 // Some of the flags below:
#define FUNC_NORET 0x00000001L // function doesn't return
#define FUNC_LIB 0x00000004L // library function
#define FUNC_HIDDEN 0x00000040L // a hidden function chunk
#define FUNC_THUNK 0x00000080L // thunk (jump) function
#define FUNC_TAIL 0x00008000L // This is a function tail.
 // Other bits should be clear

 // (except FUNC_HIDDEN)
 union // func_t either represents an entry chunk or a tail chunk
 {
 struct // attributes of a function entry chunk
 {
 asize_t argsize; // number of bytes purged from the stack
 // upon returning
 ushort pntqty; // number of times the ESP register changes

 // throughout the function (due to PUSH, etc.)
 int tailqty; // number of function tails this function owns
 area_t *tails; // array of tails, sorted by ea

 }
 struct // attributes of a function tail chunk
 {
 ea_t owner; // the address of the main function
 // possessing this tail
 }
...
};

Because functions are also areas just like segments, iterating through each function is a process
almost identical to dealing with segments. The following example lists all functions and their
address within a disassembled file, displaying output in IDA's Log window.

#include <funcs.hpp>

// get_func_qty() returns the number of functions in file(s)
// loaded.
for (int f = 0; f < get_func_qty(); f++)
{
 // getn_func() returns a func_t struct for the function
 // number supplied
 func_t *curFunc = getn_func(f);
 char funcName[MAXSTR];

 // get_func_name gets the name of a function,
 // stored in funcName
 get_func_name(curFunc->startEA,

funcName,
sizeof(funcName)-1);

 msg("%s:\t%a\n", funcName, curFunc->startEA);
}

4.2.4 Code Representation

Assembly language instructions consist of, in most cases, mnemonics (PUSH, SHR, CALL, etc.)
and operands (EAX, [EBP+0xAh], 0x0Fh, etc.) Some operands can take various forms, and
some instructions don't even take operands. All of this is represented very cleanly in the IDA
SDK.

You have the insn_t type to begin with, which represents a whole instruction, for example “MOV
EAX, 0x0A”. insn_t is made up of, amongst other member variables, up to 6 op_t's (one for
each operand supplied to the instruction), and each operand can be a particular optype_t
(general register, immediate value, etc.)

Let's look at each component from the bottom-up. They are all defined in ua.hpp.

4.2.4.1 Operand Types
optype_t represents the type of operand that is being supplied to an instruction. Here are the
more common operand type values. The descriptions have been taken from the optype_t
definition in ua.hpp.

Operand Description Example disassembly
(respective operand in
bold)

o_void No Operand pusha
o_reg General Register dec eax
o_mem Direct Memory Reference mov eax, ds:1001h
o_phrase Memory Ref [Base Reg + Index Reg] push dword ptr [eax]
o_displ Memory Ref [Base Reg + Index Reg +

Displacement]
push [esp+8]

o_imm Immediate Value add ebx, 10h
o_near Immediate Near Address call _initterm

4.2.4.2 Operands
op_t represents a single operand passed to an instruction. Below is a highly cut-down version of
the class.

class op_t
{
public:
 char n; // number/position of the operand (0,1,2)
 optype_t type; // type of operand (see previous section)
 ushort reg; // register number (if type is o_reg)
 uval_t value; // operand value (if type is o_imm)
 ea_t addr; // virtual address pointed to or used by the

 // operand (if type is o_mem)
...
};

So, for example, the operand of [esp+8] will result in type being o_displ, reg being 4 (which
is the number for the ESP register) and addr being 8, because you are accessing 8 bytes from
the stack pointer, thereby being a memory reference. You can use the following snippet of code
for getting the op_t value of the first operand of the instruction your cursor is currently positioned
at in IDA:

#include <kernwin.hpp>
#include <ua.hpp>

// Disassemble the instruction at the cursor position, store it in
// the globally accessible 'cmd' structure.
ua_ana0(get_screen_ea());
// Display information about the first operand
msg("n = %d type = %d reg = %d value = %a addr = %a\n",
 cmd.Operands[0].n,
 cmd.Operands[0].type,
 cmd.Operands[0].reg,
 cmd.Operands[0].value,
 cmd.Operands[0].addr);

4.2.4.3 Mnemonics
The mnemonic (PUSH, MOV, etc.) within the instruction is represented by the itype member of
the insn_t class (see the next section). This is, however, an integer, and there is currently no
textual representation of the instruction available to the user in any data structure – instead, it is
obtained through use of the ua_mnem() function, which will be covered in Chapter 5 - Functions.

There is an enum, named instruc_t (allins.hpp) that holds all mnemonic identifiers
(prefixed with NN_). If you know what instructions you are after or want to test for, you can utilise
it rather than work off a text representation. For example, to test if the first instruction in a binary
is a PUSH, you could do the following:

#include <ua.hpp>
#include <allins.hpp>

// Populate 'cmd' with the code at the entry point of the binary
ua_ana0(inf.startIP);
// Test if that instruction is a PUSH
if (cmd.itype == NN_push)
 msg("First instruction is a PUSH");
else
 msg("First instruction isn't a PUSH");
return;

4.2.4.4 Instructions
insn_t represents a whole instruction. It contains an op_t array, named Operands, which
represents all operands passed to the instruction. Obviously there are instructions that take no
operands (like PUSHA, CDQ, etc.), in which case the Operands[0] variable will have an
optype_t of o_void (no operand).

class insn_t
{
public:
 ea_t cs; // code segment base (in paragraphs)
 ea_t ip; // offset within the segment
 ea_t ea; // instruction start addresses
 ushort itype; // mnemonic identifier
 ushort size; // instruction size in bytes
#define UA_MAXOP 6
 op_t Operands[UA_MAXOP];
#define Op1 Operands[0] // first operand
#define Op2 Operands[1] // second operand
#define Op3 Operands[2] // ...
#define Op4 Operands[3]
#define Op5 Operands[4]
#define Op6 Operands[5]
};

There is a globally accessible instance of insn_t named cmd, which gets populated by the
ua_ana0() and ua_code() functions. More on this later, but in the mean time, here's an
example to get the instruction at a file's entry point and display its instruction number, address
and size in IDA's Log window.

#include <ua.hpp>

// ua_ana0() populates the cmd structure with a disassembly of the
// address supplied.
ua_ana0(inf.beginEA); // or inf.startIP
msg("instruction number: %d, at %a is %d bytes in size.\n",

 cmd.itype, cmd.ea, cmd.size);

4.2.5 Cross Referencing

One of the handy features in IDA is the cross-referencing functionality, which will tell you about all
parts of the currently disassembled file that reference another part of that file. For instance, in
IDA, you can highlight a function in the disassembly window, press 'x' and all addresses where
that function is referenced (e.g. calls made to the function) will appear in a window. The same can
be done for data and local variables too.

The SDK provides a simple interface for accessing this information, which is stored internally in a
B-tree data structure, accessed via the xrefblk_t structure. There are other, more manual,
ways to retrieve this sort of information, but they are much slower than the methods outlined
below.

One important thing to remember is that even when an instruction naturally flows onto the next,
IDA can potentially treat the first as referencing the second, but this can be turned off using flags
supplied to some xrefblk_t methods, covered in Chapter 5 - Functions.

4.2.5.1 The xrefblk_t Structure
Central to cross referencing functionality is the xrefblk_t structure, which is defined in
xref.hpp. This structure first needs to be populated using its first_from() or first_to()
methods (depending on whether you want to find references to or from an address), and
subsequently populated using next_from() or next_to() as you traverse through the
references.

The variables within this structure are shown below and commentary is mostly from xref.hpp.
The methods (first_from, first_to, next_from and next_to) have been left out, but will
be covered in Chapter 5 - Functions.

struct xrefblk_t
{
 ea_t from; // the referencing address
 ea_t to; // the referenced address
 uchar iscode; // 1-is code reference; 0-is data reference
 uchar type; // one of the cref_t or dref_t types (see
 // section 4.2.5.2 and 4.2.5.3)
...
};

As indicated by the iscode variable, xrefblk_t can contain information about a code
reference or a data reference, each of which could be one of a few possible reference types, as
indicated by the type variable. These code and data reference types are explained in the
following two sections.

The below code snippet will give you cross reference information about the address your cursor is
currently positioned at:

#include <kernwin.hpp>

#include <xref.hpp>

xrefblk_t xb;
// Get the address of the cursor position
ea_t addr = get_screen_ea();
// Loop through all cross references
for (bool res = xb.first_to(addr, XREF_FAR); res; res = xb.next_to()) {

msg("From: %a, To: %a\n", xb.from, xb.to);
msg("Type: %d, IsCode: %d\n", xb.type, xb.iscode);

}

4.2.5.2 Code
Here is the cref_t enum, with some irrelevant items taken out. Depending on the type of
reference, the type variable in xrefblk_t will be one of the below if iscode is set to 1. The
commentary for the below is taken from xref.hpp.

enum cref_t
{
...
 fl_CF = 16, // Call Far
 // This xref creates a function at the
 // referenced location
 fl_CN, // Call Near
 // This xref creates a function at the
 // referenced location
 fl_JF, // Jump Far
 fl_JN, // Jump Near
 fl_F, // Ordinary flow: used to specify execution
 // flow to the next instruction.
...
};

Below is a code cross reference taken from a sample binary file. In this case, 712D9BFE is
referenced by 712D9BF6, which is a near jump (fl_JN) code reference type.

.text:712D9BF6 jz short loc_712D9BFE

...

.text:712D9BFE loc_712D9BFE:

.text:712D9BFE lea ecx, [ebp+var_14]

4.2.5.3 Data
If iscode in xrefblk_t is set to 0, it is a data cross reference. Here are the possible type
member values when you're dealing with a data cross reference. The commentary for this enum
is also taken from xref.hpp.

enum dref_t
{
...
 dr_O, // Offset
 // The reference uses 'offset' of data
 // rather than its value
 // OR
 // The reference appeared because

 // the "OFFSET" flag of instruction is set.
 // The meaning of this type is IDP dependent.

 dr_W, // Write access
 dr_R, // Read access
...
};

Keep in mind that when you see the following in a disassembly, you are actually looking at a data
cross reference, whereby 712D9BD9 is referencing 712C119C:

.idata:712C119C extrn wsprintfA:dword

...

.text:712D9BD9 call ds:wsprintfA

In this case, the type member of xrefblk_t would be the typical dr_R, because it's simply
doing a read of the address represented by ds:wsprintfA. Another data cross reference is
below, where the PUSH instruction at 712EABE2 is referencing a string at 712C255C:

.text:712C255C aVersion:

.text:712C255C unicode 0, <Version>,0

...

.text:712EABE2 push offset aVersion

The type member of xrefblk_t would be dr_O in this case, because it's accessing the data as
an offset.

4.3 Byte Flags

For each byte in a disassembled file, IDA records a corresponding four byte (32-bits) value,
stored in the id1 file. Of these four bytes, each half-byte (four bits or “nibble”) is a flag, which
represents an item of information about the byte in the disassembled file. The last byte of the four
flag bytes is the actual byte at that address within the disassembled file.

For example, the instruction below takes up a single byte (0x55) in the file being disassembled:

.text:010060FA push ebp

The IDA flags for the above address in the file being disassembled are 0x00010755; 0001007
being the flag component and 55 being the byte value at that address in the file. Keep in mind
that the address has no bearing on the flags at all, nor is it possible to derive flags from the
address or bytes themselves - you need to use getFlags() to get the flags for an address
(more on this below).

Obviously, not all instructions are one byte in size; take the below instruction for example, which
is three bytes (0x83 0xEC 0x14). The instruction is therefore spread across three addresses;
0x010011DE, 0x010011DF and 0x010011E0:

.text:010011DE sub esp, 14h

.text:010011E1 ...

Here are the corresponding flags for each byte in this instruction:

010011DE: 41010783
010011DF: 001003EC
010011E0: 00100314

Because these three bytes belong to the one instruction, the first byte of the instruction is referred
to as the head, and the other two are tail bytes. Once again, notice that the last byte of each flag-
set is the corresponding byte of the instruction (0x83, 0xEC, 0x14).

All flags are defined in bytes.hpp, and you can check whether a flag is set by using the flagset
returned from getFlags(ea_t ea) as the argument to the appropriate flag-checking wrapper
function. Here are some common flags along with their wrapper functions which check for their
existence. Some functions are covered in Chapter 5 - Functions, for others you should look in
bytes.hpp:

Flag Name Flag Indication Wrapper function
FF_CODE 0x00000600L Is the byte code? isCode()
FF_DATA 0x00000400L Is the byte data? isData()
FF_TAIL 0x00000200L Is this byte a part (non-head) of an

instruction data chunk?
isTail()

FF_UNK 0x00000000L Was IDA unable to classify this
byte?

isUnknown()

FF_COMM 0x00000800L Is the byte commented? has_cmt()
FF_REF 0x00001000L Is the byte referenced elsewhere? hasRef()
FF_NAME 0x00004000L Is the byte named? has_name()
FF_FLOW 0x00010000L Does the previous instruction flow

here?
isFlow()

Going back to the first “push ebp” example above, if we were to manually check the flags
returned from getFlags(0x010060FA) against a couple of the above flags, we’d get the
following results:

0x00010755 & 0x00000600 (FF_CODE) = 0x00000600. We know this is code.
0x00010755 & 0x00000800 (FF_COMM) = 0x00000000. We know this isn't commented.

The above example is purely for illustrative purposes - don't do it this way in your plug-in. As
mentioned above, you should always use the helper functions to check whether a flag is set or
not. The following will return the flags for the given head address your cursor is positioned at in
IDA.

#include <bytes.hpp>
#include <kernwin.hpp>

msg("%08x\n", getFlags(get_screen_ea()));

4.4 The Debugger

One of the most powerful features of the IDA SDK is the ability to interact with the IDA debugger,
and unless you've installed your own custom debugger plug-in, it will be one of the debugger
plug-ins that came with IDA. The following debugger plug-ins come with IDA by default, and can
be found in your IDA plugins directory:

Plugin Filename Description
win32_user.plw Windows local debugger

win32_stub.plw Windows remote debugger
linux_user.plw Linux local debugger
linux_stub.plw Linux remote debugger

These are automatically loaded by IDA and made available at start-up under the Debugger-
>Run menu. From here on, the term "debugger" will represent which ever of the above you are
using (IDA will choose the most appropriate one for you by default).

As mentioned earlier, it is possible to write debugger modules for IDA, but this isn't to be
confused with writing plug-in modules that interact with the debugger. The second type of plug-in
is what's described below.

Aside from all the functions provided for interacting with the debugger, which will be explored later
in Chapter 5 - Functions, there are some key data structures and classes that are essential to
understand before moving ahead.

4.4.1 The debugger_t Struct

The debugger_t struct, defined in idd.hpp and exported as *dbg, represents the currently
active debugger plug-in, and is available when the debugger is loaded (i.e. at start-up, not just
when you run the debugger).

struct debugger_t
{
...
 char *name; // Short debugger name like 'win32' or 'linux'
#define DEBUGGER_ID_X86_IA32_WIN32_USER 0 // Userland win32 processes
#define DEBUGGER_ID_X86_IA32_LINUX_USER 1 // Userland linux processes
 register_info_t *registers; // Array of registers
 int registers_size; // Number of registers
...
}

As a plug-in module, it's likely that you'll need to access the *name variable, possibly to test what
debugger your plug-in is running with. The *registers and registers_size variables are
also useful for obtaining a list of registers available (see the following section).

4.4.2 Registers

A common task while using the debugger is accessing and manipulating register values. In the
IDA SDK, a register is described by the register_info_t struct, and the value held by a
register is represented by the regval_t struct. Below is a slightly cut-down register_info_t
struct, which is defined in idd.hpp.

struct register_info_t
{
 const char *name; // Register full name (EBX, etc.)
 ulong flags; // Register special features,

 // which can be any combination
 // of the below.

#define REGISTER_READONLY 0x0001 // the user can't modify
 // the current value of this
 // register

#define REGISTER_IP 0x0002 // instruction pointer
#define REGISTER_SP 0x0004 // stack pointer
#define REGISTER_FP 0x0008 // frame pointer
#define REGISTER_ADDRESS 0x0010 // Register can contain an address
...
};

The only instance of this structure is accessible as the array member *registers of *dbg (an
instance of debugger_t), therefore it is up to the debugger you're using to populate it with the
list of registers available on your system.

To obtain the value for any register, it's obviously essential that the debugger be running. The
functions for reading and manipulating register values will be covered in more detail in Chapter 5
- Functions, but for now, all you need to know is to retrieve the value using the ival member of
regval_t, or use fval if you're dealing with floating point numbers.

Below is regval_t, which is defined in idd.hpp.

struct regval_t
{
 ulonglong ival; // Integer value
 ushort fval[6]; // Floating point value in the internal

// representation (see ieee.h)
};

ival/fval will correspond directly to what is stored in a register, so if EBX contains
0xDEADBEEF, ival (once populated using get_reg_val()), will also contain 0xDEADBEEF.

The following example will loop through all available registers, displaying the value in each. If you
run this outside of debug mode, the value will be 0xFFFFFFFF:

#include <dbg.hpp>

// Loop through all registers
for (int i = 0; i < dbg->registers_size; i++) {
 regval_t val;
 // Get the value stored in the register
 get_reg_val((dbg->registers+i)->name, &val);
 msg("%s: %08a\n", (dbg->registers+i)->name, val.ival);
}

4.4.3 Breakpoints

A fundamental component of debugging is breakpoints, and IDA represents hardware and
software breakpoints differently using the bpt_t struct, shown below and defined in dbg.hpp.
Hardware breakpoints are created using debug-specific registers on the running CPU (DR0-DR3
on x86), whereas software breakpoints are created by inserting an INT3 instruction at the desired
breakpoint address - although this is handled for you by IDA, it's sometimes helpful to know the
difference. On x86, the maximum number of hardware breakpoints you can set is four.

struct bpt_t
{
 // read only characteristics:
 ea_t ea; // starting address of the breakpoint
 asize_t size; // size of the breakpoint

 // (undefined if software breakpoint)
 bpttype_t type; // type of the breakpoint:
// Taken from the bpttype_t const definition in idd.hpp:
// BPT_EXEC = 0, // Execute instruction
// BPT_WRITE = 1, // Write access
// BPT_RDWR = 3, // Read/write access
// BPT_SOFT = 4; // Software breakpoint
 // modifiable characteristics (use update_bpt() to modify):
 int pass_count; // how many times does the execution reach

 // this breakpoint? (-1 if undefined)
 int flags;
#define BPT_BRK 0x01 // does the debugger stop on this breakpoint?
#define BPT_TRACE 0x02 // does the debugger add trace information

 // when this breakpoint is reached?
 char condition[MAXSTR]; // an IDC expression which will be used as

 // a breakpoint condition or run when the
 // breakpoint is hit

};

Therefore, if the type member of bpt_t is set to 0, 1 or 3, it is a hardware breakpoint, whereas
4 would indicate a software breakpoint.

There are a lot of functions that create, manipulate and read this struct, but for now, I'll provide a
simple example that goes through all defined breakpoints and display whether they are a
software or hardware breakpoint in IDA's Log window. The functions used will be explained in
more detail further on.

#include <dbg.hpp>

// get_bpt_qty() gets the number of breakpoints defined
for (int i = 0; i < get_bpt_qty(); i++) {
 bpt_t brkpnt;
 // getn_bpt fills bpt_t struct with breakpoint information based
 // on the breakpoint number supplied.
 getn_bpt(i, &brkpnt);
 // BPT_SOFT is a software breakpoint
 if (brkpnt.type == BPT_SOFT)
 msg("Software breakpoint found at %a\n", brkpnt.ea);
 else
 msg("Hardware breakpoint found at %a\n", brkpnt.ea);
}

4.4.4 Tracing

In IDA, there are three types of tracing you can enable; Function tracing, Instruction tracing and
Breakpoint (otherwise known as read/write/execute) tracing. When writing plug-ins, an additional
form of tracing is available; Step tracing. Step tracing is a low level form of tracing that allows you
to build your own tracing mechanism on top of it, utilising event notifications (see section 4.5) to
inform your plug-in of each instruction that is executed. This is based on CPU tracing
functionality, not breakpoints.

A "trace event" is generated and stored in a buffer when a trace occurs, and what triggers the
generation of a trace event depends on the type of tracing you have enabled, however it's worth
noting that step tracing will not generate trace events, but event notifications instead. The below
table lists all the different trace event types along with the corresponding tev_type_t enum
value, which is defined in dbg.hpp.

Trace Type Event Type
(tev_type_t)

 Description

Function call and return tev_call and tev_ret A function has been called or returned
from

Instruction tev_insn An instruction has been executed (this is
built on top of step tracing in the IDA
kernel)

Breakpoint tev_bpt A breakpoint with tracing enabled has
been hit. Also known as a
Read/Write/Execute trace

All trace events are stored in a circular buffer, so it never fills up, but old trace events will be
overwritten if the buffer is too small. Each trace event is represented by the tev_info_t struct,
which is defined in dbg.hpp:

struct tev_info_t
{
 tev_type_t type; // Trace event type (one of the above or tev_none)
 thread_id_t tid; // Thread where the event was recorded
 ea_t ea; // Address where the event occurred
};

Based on the bpt_t struct described in section 4.4.3, a breakpoint trace is the same as a normal
breakpoint but has the BPT_TRACE flag set on the flags member. Optionally, the condition
buffer member could have an IDC command to run at each breakpoint.

Trace information is populated during the execution of a process, but can be accessed even once
the process has exited and you are returned to static disassembly mode (unless a plug-in you are
using explicitly cleared the buffer on exit). You can use the following code to enumerate all trace
events (provided you enabled it during exeucution):

#include <dbg.hpp>

// Loop through all trace events
for (int i = 0; i < get_tev_qty(); i++) {
 regval_t esp;
 tev_info_t tev;

 // Get the trace event information
 get_tev_info(i, &tev);

 switch (tev.type) {
 case tev_ret:
 msg("Function return at %a\n", tev.ea);
 break;
 case tev_call:
 msg("Function called at %a\n", tev.ea);
 break;
 case tev_insn:
 msg("Instruction executed at %a\n", tev.ea);
 break;
 case tev_bpt:
 msg("Breakpoint with tracing hit at %a\n", tev.ea);
 break;

 default:
 msg("Unknown trace type..\n");
 }
}

It's worth noting at this point that it's not possible for a plug-in to add entries to, or even modify the
trace event log.

All of the functions used above will be covered in Chapter 5 - Functions.

4.4.5 Processes and Threads

IDA maintains information about the processes and threads currently running under the
debugger. Process and Thread IDs are represented by the process_id_t and thread_id_t
types, respectively and both are signed integers. All of these types are defined in idd.hpp. The
only other type, related to processes, is the process_info_t type, which is as follows:

struct process_info_t
{
 process_id_t pid; // Process ID
 char name[MAXSTR]; // Process Name (executable file name)
};

These are only of use when a binary is being executed under IDA (i.e. you can't use them when
in static disassembly mode). The following example illustrates a basic example usage of the
process_info_t structure.

#include <dbg.hpp>

// Get the number of processes available for debugging.
// get_process_qty() also initialises IDA's "process snapshot"
if (get_process_qty() > 0) {
 process_info_t pif;
 get_process_info(0, &pif);
 msg("ID: %d, Name: %s\n", pif.pid, pif.name);
} else {
 msg("No process running!\n");
}

The functions that utilise these structures will be discussed under Chapter 5 - Functions.

4.5 Event Notifications

Typically, plug-ins are run synchronously, in that they are executed by the user, either via
pressing the hot-key or going through the Edit->Plugins menu. A plug-in can, however, run
asynchronously, where it responds to event notifications generated by IDA or the user.

During the course of working in IDA, you'd typically click buttons, conduct searches, and so on.
All of these actions are "events", and so what IDA does is generate "event notifications" each
time these things take place. If your plug-in is setup to receive these notifications (explained
below), it can react in any way you program it to. An application for this sort of thing could be
recording macros for instance. A plug-in can also generate events, causing IDA to perform
various functions.

4.5.1 Receiving Notification

To receive event notifications from IDA, all a plug-in has to do is register a call-back function
using hook_to_notification_point(). For generating event notifications, callui() is
used, which is covered in more detail in Chapter 5 - Functions.

When registering a call-back function with hook_to_notification_point(), you can specify
one of three event types, depending on what notifications you want to receive. These are defined
in the hook_type_t enum within loader.hpp:

Type Receive Event Notifications From Enum of All Event Notification Types
HT_IDP Processor module idp_notify (not covered here)

HT_UI IDA user interface ui_notification_t
HT_DBG Currently running IDA debugger dbg_notification_t

Therefore, to receive all event notifications pertaining to the debugger and direct them to your
dbg_callback (for example) call-back function, you could put the following inside
IDAP_init():

hook_to_notification_point(HT_DBG, dbg_callback, NULL);

The third argument is typically NULL, unless you want to pass data along to the call-back function
when it receives an event (any data structure of your choosing).

The call-back function supplied to hook_to_notification_point() must look something like
this:

int idaapi mycallback (void *user_data, int notif_code, va_list va)
{

...
return 0;

}

When mycallback() is eventually called by IDA to handle an event notification, user_data
will point to any data you specified to have passed along to the call-back function (defined in the
call to hook_to_notification_point()). notif_code will be the actual event identifier
(listed in the following two sections) and va is any data supplied by IDA along with the event,
possibly to provide further information.

The call-back function should return 0 if it permits the event notification to be handled by
subsequent handlers (the typical scenario), or any other value if it is to be the only/last handler.

Something worth remembering is if you use hook_to_notification_point() in your plug-in,
you must also use unhook_from_notification_point(), either once you no longer need to
receive notifications, or inside your IDAP_term() function. This will avoid unexpected
segmentation faults when exiting IDA. Going by the example above, to unhook the hooked
notification point, it would be done like this:

unhook_from_notification_point(HT_DBG, dbg_callback, NULL);

4.5.2 UI Event Notifications

ui_notification_t is an enum defined in kernwin.hpp, and contains all user interface
event notifications that can be generated by IDA or a plug-in. To register for these event
notifications, you must use HT_UI as the first argument to hook_to_notification_point().

The following two lists show some of the event notifications that can be received and/or
generated by a plug-in. These are only a sub-set of possible event notifications; what's listed are
the more general purpose ones.

Although the below can be generated by a plug-in using callui(), most have helper functions,
which means you don't need to use callui() and can just call the helper function instead.

Event Notification Description Helper Function
ui_jumpto Moves the cursor to an address jumpto
ui_screenea Return the address where the

cursor is currently positioned
get_screen_ea

ui_refresh Refresh all disassembly views refresh_idaview_anyway
ui_mbox Display a message box to the

user
vwarning, vinfo and
more.

ui_msg Print some text in IDA's Log
window

deb, vmsg

ui_askyn Dislpay a message box with Yes
and No as options

askbuttons_cv

ui_askfile Prompt the user for a filename askfile_cv
ui_askstr Prompt the user for a single line

string
vaskstr

ui_asktext Prompt the user for some text vasktext
ui_form Display a form (very flexible!) AskUsingForm_cv
ui_open_url Open a web browser at a

particular URL
open_url

ui_load_plugin Load a plug-in load_plugin
ui_run_plugin Run a plug-in run_plugin
ui_get_hwnd Get the HWND (Window Handle)

for the IDA window
none

ui_get_curline Get the colour-coded
disassembled line

get_curline

ui_get_cursor Get the X and Y coordinates of
the current cursor position

get_cursor

The following event notifications are received by the plug-in, and would be handled by your call-
back function.

Event Notification Description
ui_saving & ui_saved IDA is currently saving and has saved the database, respectively
ui_term IDA has closed the database

For example, the following code will generate a ui_screenea event notification and display the
result in an IDA dialog box using an ui_mbox event notification.

void IDAP_run(int arg)
{
 ea_t addr;
 va_list va;
 char buf[MAXSTR];

 // Get the current cursor position, store it in addr
 callui(ui_screenea, &addr);
 qsnprintf(buf, sizeof(buf)-1, "Currently at: %a\n", addr);

 // Display an info message box
 callui(ui_mbox, mbox_info, buf, va);

 return;
}

In the above case, you would typically use the helper functions, however callui() was used for
illustrative purposes.

4.5.3 Debugger Event Notifications

Debugger event notifications are broken up into Low Level, High Level and Function Result event
notifications; the difference between them will be made clear in the following sub-sections. All of
the event notifications mentioned below belong to the dbg_notification_t enum, which is
defined in dbg.hpp. If you supplied HT_DBG to hook_to_notification_point(), the
below event notifications will be passed to your plug-in while a process is being debugged in IDA.

4.5.3.1 Low Level Events
The following events taken from dbg_notification_t are all low level event notifications.
Low level event notifications are generated by the debugger.

Event Notification Description
dbg_process_start Process started
dbg_process_exit Process ended
dbg_library_load Library was loaded
dbg_library_unload Library was unloaded
dbg_exception Exception was raised
dbg_breakpoint A non-user defined breakpoint was hit

The debug_event_t struct (idd.hpp), which you can use to obtain further information about a
debugger event notification, is always supplied in the va argument to your call-back function (for
low level event notifications only). Here is the whole debug_event_t struct.

struct debug_event_t
{
 event_id_t eid; // Event code (used to decipher 'info' union)
 process_id_t pid; // Process where the event occurred
 thread_id_t tid; // Thread where the event occurred

 ea_t ea; // Address where the event occurred
 bool handled; // Is event handled by the debugger?
 // (from the system's point of view)

 // The comments on the right indicate what eid value is
 // required for the corresponding union member to be set.
 union
 {
 module_info_t modinfo; // PROCESS_START, PROCESS_ATTACH,

 // LIBRARY_LOAD
 int exit_code; // PROCESS_EXIT, THREAD_EXIT
 char info[MAXSTR]; // LIBRARY_UNLOAD (unloaded library name)
 // INFORMATION (will be displayed in the
 // messages window if not empty)
 e_breakpoint_t bpt; // BREAKPOINT (non-user defined!)
 e_exception_t exc; // EXCEPTION
 };
};

For example, if your call-back function received the dbg_library_load event notification, you
could look at debug_event_t's modinfo member to see what the file loaded was:

...
// Our callback function to handle HT_DBG event notifications
static int idaapi dbg_callback(void *udata, int event_id, va_list va)
{
 // va contains a debug_event_t pointer
 debug_event_t *evt = va_arg(va, debug_event_t *);

 // If the event is dbg_library_load, we know modinfo will be set
 // and contain the name of the library loaded
 if (event_id == dbg_library_load)
 msg("Loaded library, %s\n", evt->modinfo.name);

 return 0;
}

// Our init function
int IDAP_init(void)
{
 // Register the notification point as our dbg_callback function.
 hook_to_notification_point(HT_DBG, dbg_callback, NULL);
...

4.5.3.2 High Level Event Notifications
The following events taken from dbg_notification_t are all high level event notifications,
which are generated by the IDA kernel.

Event Notification Description
dbg_bpt User-defined breakpoint was hit
dbg_trace One instruction was executed (needs step tracing enabled)
dbg_suspend_process Process has been suspended
dbg_request_error An error occurred during a request (see section 5.14)

Each of these event notifications has different arguments supplied along with them in the va
argument to your call-back function. None have debug_event_t supplied, like low level event
notifications do.

The dbg_bpt event notification comes with both the Thread ID (thread_id_t) of the affected
thread and the address where the breakpoint was hit in va. The below example will display a
message in IDA’s Log window when a user-defined breakpoint is hit.

...
int idaapi dbg_callback(void *udata, int event_id, va_list va)
{
 // Only for the dbg_bpt event notification
 if (event_id == dbg_bpt)
 // Get the Thread ID
 thread_id_t tid = va_arg(va, thread_id_t);
 // Get the address of where the breakpoint was hit
 ea_t addr = va_arg(va, ea_t);

 msg("Breakpoint hit at: %a, in Thread: %d\n", addr, tid);

 return 0;
}

int IDAP_init(void)
{

 hook_to_notification_point(HT_DBG, dbg_callback, NULL);
...

4.5.3.3 Function Result Notifications
In later sections, the concept of Synchronous and Asynchronous debugger functions will be
discussed in more detail; until then, all you need to know is that synchronous debugger functions
are just like ordinary functions – you call them, they do something and return. Asynchronous
debugger functions however, get called and return without having completed the task, effectively
having the request put into a queue and run in the background. When the task is completed, an
event notification is generated indicating the completion of the original request.

The following are all function result notifications.

Event Notification Description
dbg_attach_process Debugger attached to a process (IDA 4.8)
dbg_detach_process Debugger detached from a process (IDA 4.8)
dbg_process_attach Debugger attached to a process (IDA 4.9)
dbg_process_detach Debugger detached from a process (IDA 4.9)
dbg_step_into Debugger stepped into a function
dbg_step_over Debugger stepped over a function
dbg_run_to Debugger has run to user's cursor position
dbg_step_until_ret Debugger has run until return to caller was made

For example, the below code in IDAP_run() asks IDA to attach to a process. Once successfully
attached, IDA generates the event notification, dbg_attach_process, which is handled by the
dbg_callback call-back function.

...
int idaapi dbg_callback(void *udata, int event_id, va_list va)
{
 // Get the process ID of what was attached to.
 process_id_t pid = va_arg(va, process_id_t);
 // Change dbg_attach_process to dbg_process_attach if you're
 // using IDA 4.9
 if (event_id == dbg_attach_process)
 msg("Successfully attached to PID %d\n", pid);

 return 0;
}

void IDAP_run(int arg)
{
 int res;
 // Attach to a process. See Chapter 5 for usage.
 attach_process(NO_PROCESS, res);
 return;
}

int IDAP_init(void) {
 hook_to_notification_point(HT_DBG, dbg_callback, NULL);
...

4.6 Strings

The Strings window in IDA can be accessed using the SDK, in particular each string within the
binary (that is detected when the file is opened) is represented by the string_info_t structure,
which is defined in strlist.hpp. Below is a slightly cut-down version of that structure.

struct string_info_t
{
 ea_t ea; // Address of the string
 int length; // String length
 int type; // String type (0=C, 1=Pascal, 2=Pascal 2 byte

 // 3=Unicode, etc.)
...
};

Keep in mind that the above structure doesn't actually contain the string. To retrieve the string,
you need to extract it from the binary file using get_bytes() or get_many_bytes(). To
enumerate through the list of strings available, you could do the following:

// Loop through all strings
for (int i = 0; i < get_strlist_qty(); i++) {

char string[MAXSTR];
string_info_t si;
// Get the string item
get_strlist_item(i, &si);
if (si.length < sizeof(string)) {

// Retrieve the string from the binary

get_many_bytes(si.ea, string, si.length);
if (si.type == 0) // C string

msg("String %d: %s\n", i, string);
if (si.type == 3) // Unicode

msg("String %d: %S\n", i, string);
}

}

The above functions will be covered under Chapter 5 – Functions.

5. Functions
This section is broken up into different areas that the exported IDA SDK functions mostly fit into.
I'll start from the most simple and more frequently used functions to the more complex and
"niche" ones. I'll also provide basic examples with each function and the examples under the
Examples section should provide more context. Obviously, this isn't a complete reference (refer to
the header files in the SDK for that), but more of an overview of the most used and useful
functions.

Important note about the examples: All of the functions below can be called from the
IDAP_run(), IDAP_init() or IDAP_term() functions, unless otherwise indicated. Any of
the examples can be pasted straight into the IDAP_run() function from the plug-in template in
section 3.4 and should work. The additional header files required for each function and example
will be specified where necessary.

5.1 Common Function Replacements

IDA provides many replacement functions for common C library routines. It is recommended that
you use the replacements listed below instead of those provided by your C library. As of IDA 4.9,
a lot of the C library routines are no longer available - you must use the IDA equivalent.

C Library Functions IDA Replacements Defined In
fopen, fread, fwrite,
fseek, fclose

qfopen, qfread, qfwrite,
qfseek, qfclose

fpro.h

fputc, fgetc, fputs, fgets qfputc, qfgetc, qfputs,
qfgets

fpro.h

vfprintf, vfscanf, vprintf qfprintf, qfscanf, qvprintf fpro.h
strcpy, strncpy, strcat,
strncat

qstrncpy, qstrncat pro.h

sprintf, snprintf,
wsprintf

qsnprintf pro.h

open, close, read, write,
seek

qopen, qclose, qread, qwrite,
qseek

pro.h

mkdir, isdir, filesize qmkdir, qisdir, qfilesize pro.h
exit, atexit qexit, qatexit pro.h
malloc, calloc, realloc,
strdup, free

qalloc, qcalloc, qrealloc,
qstrdup, qfree

pro.h

It is strongly recommended that you use the above functions, however if you're porting an old
plug-in and for some reason need the C library function, you can compile your plug-in with
-DUSE_DANGEROUS_FUNCTIONS or -DUSE_STANDARD_FILE_FUNCTIONS.

5.2 Messaging

These are the functions you will probably use the most when writing a plug-in; not because they
are the most useful, but simply because they provide a means for simple communication with the
user and can be a great help when debugging plug-ins.

As you can probably tell from the definitions, all of these functions are inlined and take printf
style arguments. They are all defined in kernwin.hpp.

5.2.1 msg

Definition inline int
msg(const char *format,...)

Synopsis Display a text message in IDA's Log window (bottom of the screen during static
disassembly, top of the screen during debugging).

Example msg("Starting analysis at: %a\n", inf.startIP);

5.2.2 info

Definition inline int
info(const char *format,...)

Synopsis Display a text message in a pop-up dialog box with an 'info' style icon.

Example info("My plug-in v1.202 loaded.");

5.2.3 warning

Definition inline int
warning(const char *format,...)

Synopsis Display a text message in a pop-up dialog box with an 'warning' style icon.

Example warning("Please beware this could crash IDA!\n");

5.2.4 error

Definition inline int
error(const char *format,...)

Synopsis Display a text message in a pop-up dialog box with an 'error' style icon. Closes
IDA (uncleanly) after the user clicks OK.

Example error("There was a critical error, exiting IDA.\n");

5.3 UI Navigation

The functions below are specifically for interacting with the user and the IDA GUI. Some of them
use callui() to generate an event to IDA. All are defined in kernwin.hpp.

5.3.1 get_screen_ea

Definition inline ea_t
get_screen_ea(void)

Synopsis Returns the address within the current disassembled file(s) that the user's
cursor is positioned at.

Example
#include <kernwin.hpp>

msg("Cursor position is %a\n", get_screen_ea());

5.3.2 jumpto

Definition inline bool
jumpto(ea_t ea, int opnum=-1)

Synopsis
Moves the user's cursor to a position within the current disassembled file(s),
represented by ea. opnum is the X coordinate that the cursor will be moved to,
or -1 if it isn't to be changed. Returns true if successful, false if it failed.

Example

#include <kernwin.hpp>

// Jump to the binary entry point + 8 bytes, don't move
// the cursor along the X-axis
jumpto(inf.startIP + 8);

5.3.3 get_cursor

Definition inline bool
get_cursor(int *x, int *y)

Synopsis Fills *x and *y with the X and Y coordinates of the user's cursor position
within the current disassembled file(s).

Example

#include <kernwin.hpp>

int x, y;
// Store the cursor X coordinate in x, and the Y
// coordinate in Y, display the results in the Log window
get_cursor(&x, &y);
msg("X: %d, Y: %d\n", x, y);

5.3.4 get_curline

Definition inline char *
get_curline(void)

Synopsis

Return a pointer to the line of text at the user's cursor position. This will return
everything on the line – the address, code and comments. It will also be
colour-coded, which you would use tag_remove() (see section 5.20.1) to
clean.

Example

#include <kernwin.hpp>

// Display the current line of text in the Log window
msg("%s\n", get_curline());

5.3.5 read_selection

Definition inline bool
read_selection(ea_t *ea1, ea_t *ea2)

Synopsis Fills *ea1 and *ea2 with the start and end addresses, respectively, of the
user's selection. Returns true if there was a selection, false if there wasn't.

Example

#include <kernwin.hpp>

ea_t saddr, eaddr;
// Get the address range selected, or return false if
// there was no selection
int selected = read_selection(&saddr, &eaddr);
if (selected) {
 msg("Selected range: %a -> %a\n", saddr, eaddr);
} else {
 msg("No selection.\n");
}

5.3.6 callui

Definition idaman callui_t ida_export_data
(idaapi*callui)(ui_notification_t what,...)

Synopsis

The user interface dispatcher function. This enables you to call the events
listed in section 4.5.2, and many others within the ui_notification_t
enum. callui() is always passed a ui_notification_t type as the first
argument (ui_jumpto, ui_banner, etc.) followed by any arguments required
for the respective notification.

Example

#include <windows.hpp> // For the HWND definition
#include <kernwin.hpp>

// For ui_get_hwnd, *vptr of callui_t has the result
// We need to cast the result because vptr is a void
// pointer
HWND hwnd = (HWND)callui(ui_get_hwnd).vptr;

// If hwnd is NULL, we're running under the IDA text
// version
if (hwnd == NULL)
 error("Cannot run in the IDA text version!");

5.3.7 askaddr

Definition inline int
askaddr(ea_t *addr,const char *format,...)

Synopsis
Presents a dialog box asking the user to supply an address. *addr will be the
default value to start with, and then filled with the user supplied address upon
clicking OK. *format is the printf style text that goes in the dialog box.

Example

#include <kernwin.hpp>

// Set the default value to the entry point of the file
ea_t addr = inf.startIP;
// As the user for an address.
askaddr(&addr, "Please supply an address to jump to.");
// Move the cursor to that address (see section 5.3.2)
jumpto(addr);

5.3.8 AskUsingForm_c

Definition inline int
AskUsingForm_c(const char *form,...)

Synopsis
Displays a form to the user, and is too flexible to be covered here but is heavily
commented in kernwin.hpp. It effectively allows you to design your own user
form, including buttons, text fields, radio buttons and text as format strings.

Example

#include <kernwin.hpp>

// The text before the first \n is the title, followed
// by the first input field (as indicated by the <>) and
// then a second input field.
// The format of input fields is:
// <label:field type:maximum chars:field length:help
// identifier>
// The result is stored in result1 and result1
// respectively.
// For more information on input fields, see the
// AskUsingForm_c section of kernwin.hpp

char form[] = "My Title\n<Please enter some text "
 "here:A:20:30::>\n<And here:A:20:30::>\n";
char result1[MAXSTR] = "";
char result2[MAXSTR] = "";
AskUsingForm_c(form, result1, result2);
msg("User entered text: %s and %s\n", result1, result2);

5.4 Entry Points

The following functions are for working with entry points (where execution begins) in a binary.
They can all be found in entry.hpp.

5.4.1 get_entry_qty

Definition idaman size_t
ida_export get_entry_qty(void)

Synopsis Returns the number of entry points in the currently disassembled file(s). This
will typically return 1, except for DLLs, which can have many.

Example
#include <entry.hpp>

msg("Number of entry points: %d\n", get_entry_qty());

5.4.2 get_entry_ordinal

Definition idaman uval_t
ida_export get_entry_ordinal(size_t idx)

Synopsis
Returns the ordinal number of the entry point index number supplied as idx.
You need the ordinal number because get_entry() and
get_entry_name() use it.

Example

#include <entry.hpp>

// Display the ordinal number for all entry points
for (int e = 0; e < get_entry_qty(); e++)
 msg("Ord # for %d is %d\n", e, get_entry_ordinal(e));

5.4.3 get_entry

Definition idaman ea_t
ida_export get_entry(uval_t ord);

Synopsis
Returns the address of an entry point ordinal number, supplied as the ord
argument. Use get_entry_ordinal() to get the ordinal number of an entry
point number, as shown in section 5.4.2

Example

#include <entry.hpp>

// Loop through each entry point.
for (int e = 0; e < get_entry_qty(); e++)
 msg("Entry point found at: %a\n",
 get_entry(get_entry_ordinal(e)));

5.4.4 get_entry_name

Definition idaman char *
ida_export get_entry_name(uval_t ord)

Synopsis Return a pointer to the name of the entry point address (e.g. start)

Example

#include <entry.hpp>

// Loop through each entry point
for (int e = 0; e < get_entry_qty(); e++) {
 int ord = get_entry_ordinal(e);
 // Display the entry point address and name
 msg("Entry point %a: %s\n",
 get_entry(ord),
 get_entry_name(ord));
}

5.5 Areas

The following functions work with areas and area control blocks, as described in section 4.2.2 and
4.2.3 respectively. Unlike all the functions covered so far, they are methods within the areacb_t
class, and so therefore can only be used on instances of that class. Two instances of areacb_t
are funcs and segs, representing all functions and segments within the currently disassembled
file(s) in IDA.

Although you should use the segment-specific functions for dealing with segments, and the
function-specific functions for dealing with functions, working with areas directly gives you a more
abstract way of dealing with functions and segments.

All the below are defined in area.hpp.

5.5.1 get_area

Definition area_t *
get_area(ea_t ea)

Synopsis Returns a pointer to the area_t structure to which ea belongs.

Example

#include <kernwin.hpp> // For askaddr() definition
#include <funcs.hpp> // For funcs definition
#include <area.hpp>

ea_t addr;

// Ask the user for an address (see section 5.3.7)
askaddr(&addr, "Find the function owner of address:");

// Get the function that owns that address
// You could use segs.get_area(addr) to get the
// segment that owned to address here too.
area_t *area = funcs.get_area(addr);
msg("Area holding %a starts at %a, ends at %a\n",
 addr,
 area->startEA,
 area->endEA);

5.5.2 get_area_qty

Definition uint
get_area_qty(void)

Synopsis Get the number of areas within the current area control block.

Example

#include <funcs.hpp> // For funcs definition
#include <segment.hpp> // For segs definition
#include <area.hpp>

msg("%d Functions, and %d Segments",
 funcs.get_area_qty(),
 segs.get_area_qty());

5.5.3 getn_area

Definition area_t *
getn_area(unsigned int n)

Synopsis Returns a pointer to an area_t struct for the area number supplied as n.

Example

#include <funcs.hpp> // For funcs definition
#include <segment.hpp> // For segs definition
#include <area.hpp>

// funcs represents all functions, so get the first
// function area (0).
area_t *firstFunc = funcs.getn_area(0);
msg("First func starts: %a, ends: %a\n",
 firstFunc->startEA,
 firstFunc->endEA);

// segs represents all segments, so get the first
// segment area (0).
area_t *firstSeg = segs.getn_area(0);
msg("First seg starts: %a, ends: %a\n",
 firstSeg->startEA,
 firstSeg->endEA);

5.5.4 get_next_area

Definition int
get_next_area(ea_t ea)

Synopsis Returns the number of the area following the area containing address ea.

Example

#include <funcs.hpp> // For funcs definition
#include <area.hpp>

// Loop through functions as areas from first to last
int i = 0;
for (area_t *func = funcs.getn_area(0);
 i < funcs.get_area_qty();
 i++)
{
 msg ("Area start: %a, end: %a\n",
 func->startEA,
 func->endEA);
 int funcNo = funcs.get_next_area(func->startEA);
 func = funcs.getn_area(funcNo);
}

5.5.5 get_prev_area

Definition int
get_prev_area(ea_t ea)

Synopsis Returns the number of the area preceding the area containing address ea.

Example

#include <segment.hpp> // For segs definition
#include <area.hpp>

// Loop through segments as areas from last to first
int i = segs.get_area_qty();
for (area_t *seg = segs.getn_area(0); i > 0; i--) {
 msg ("Area start: %a, end: %a\n",
 seg->startEA,
 seg->endEA);
 int segNo = segs.get_next_area(seg->startEA);
 seg = segs.getn_area(segNo);
}

5.6 Segments

The following functions work with segments (.text, .idata, etc.) and are defined in
segment.hpp. A lot of these functions are simply wrappers to areacb_t methods for the segs
variable.

5.6.1 get_segm_qty

Definition inline int
get_segm_qty(void)

Synopsis Returns the number of segments in the currently disassembled file(s). This
simply calls segs.get_area_qty().

Example

#include <segment.hpp>

msg("%d segments in disassembled file(s).\n",
 get_segm_qty());

5.6.2 getnseg

Definition inline segment_t *
getnseg(int n)

Synopsis Returns a pointer to the segment_t struct for the segment number, n,
supplied. This is a wrapper to segs.getn_area().

Example

#include <segment.hpp>

// Get the address of segment 0 (the first segment)
segment_t *firstSeg = getnseg(0);
msg("Address of the first segment is %a\n",
 firstSeg->startEA);

5.6.3 get_segm_by_name

Definition idaman segment_t *ida_export
get_segm_by_name(const char *name)

Synopsis
Returns a pointer to the segment_t struct for the segment with name, *name.
Will return NULL if there is no such segment. If there are multiple segments
with the same name, the first will be returned.

Example

#include <segment.hpp>

// Get the segment_t structure for the .text segment.
segment_t *textSeg = get_segm_by_name(".text");
msg("Text segment is at %a\n", textSeg->startEA);

5.6.4 getseg

Definition inline segment_t *
getseg(ea_t ea)

Synopsis Returns the segment_t struct for the segment that contains address ea.
This function is a wrapper to segs.get_area().

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <segment.hpp>

// Get the address of the user's cursor position
// see section 5.2.1 for get_screen_ea()
ea_t addr = get_screen_ea();

// Get the segment that owns that address
area_t *area = segs.get_area(addr);
msg("Segment holding %a starts at %a, ends at %a\n",
 addr,
 area->startEA,
 area->endEA);

5.6.5 get_segm_name (IDA 4.8)

Definition idaman char *ida_export
get_segm_name(const segment_t *s)

Synopsis Returns the name ("_text", "_idata", etc.) of segment *s.

Example

#include <segment.hpp>

// Loop through all segments displaying their names
for (int i = 0; i < get_segm_qty(); i++) {
 segment_t *seg = getnseg(i);
 msg("Segment %d at %a is named %s\n",
 i,
 seg->startEA,
 get_segm_name(seg));
}

5.6.6 get_segm_name (IDA 4.9)

Definition
idaman ssize_t ida_export
get_segm_name(const segment_t *s, char *buf, size_t
bufsize)

Synopsis Fills *buf, limited by bufsize with the name ("_text", "_idata", etc.) of
segment *s. Returns the size of the segment name, or -1 if s is NULL.

Example

#include <segment.hpp>

// Loop through all segments displaying their names
for (int i = 0; i < get_segm_qty(); i++) {
 char segName[MAXSTR];
 segment_t *seg = getnseg(i);
 get_segm_name(seg, segName, sizeof(segName)-1);
 msg("Segment %d at %a is named %s\n",
 i,
 seg->startEA,
 segName);
}

5.7 Functions

The below set of functions are for working with functions within the currently disassembled file(s)
in IDA. As with segments, functions are areas, and so some of the below functions are simply
wrappers to areacb_t methods, in funcs. All are defined in funcs.hpp.

5.7.1 get_func_qty

Definition idaman size_t ida_export
get_func_qty(void)

Synopsis Returns the number of functions in the currently disassembled file(s).

Example

#include <funcs.hpp>

msg("%d functions in disassembled file(s).\n",
 get_func_qty());

5.7.2 get_func

Definition idaman func_t *ida_export
get_func(ea_t ea)

Synopsis

Returns a pointer to the func_t structure representing the function that "owns"
address ea. If ea is not part of a function, NULL is returned. Only function entry
chunks are returned (see section 4.2.3.2 for information about chunks and
tails).

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <funcs.hpp>

// Get the address of the user's cursor
ea_t addr = get_screen_ea();
func_t *func = get_func(addr);
if (func != NULL) {
 msg("Current function starts at %a\n", func->startEA);
} else {
 msg("Not inside a function!\n");
}

5.7.3 getn_func

Definition idaman func_t *ida_export
getn_func(size_t n)

Synopsis
Returns a pointer to the func_t representing the function number supplied as
n. Will return NULL if n is a non-existent function number. It will also only return
function entry chunks.

Example

#include <funcs.hpp>

// Loop through all functions
for (int i = 0; i < get_func_qty(); i++) {
 func_t *curFunc = getn_func(i);
 msg("Function at: %a\n", curFunc->startEA);
}

5.7.4 get_func_name

Definition idaman char *ida_export
get_func_name(ea_t ea, char *buf, size_t bufsize)

Synopsis
Gets the name of the function owning address ea, and stores it in *buf, limited
by the length of bufsize. It returns the *buf pointer or NULL if the function
has no name.

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <funcs.hpp>

// Get the address of the user's cursor
ea_t addr = get_screen_ea();
func_t *func = get_func(addr);
if (func != NULL) {
 // Buffer where the function name will be stored
 char funcName[MAXSTR];
 if (get_func_name(func->startEA, funcName, MAXSTR)
 != NULL) {
 msg("Current function %a, named %s\n",
 func->startEA,
 funcName);
 }
}

5.7.5 get_next_func

Definition idaman func_t *
ida_export get_next_func(ea_t ea)

Synopsis Returns a pointer to the func_t structure representing the function following
the one owning ea. Returns NULL if there is no following function.

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <funcs.hpp>

ea_t addr = get_screen_ea();
// Get the function after the one containing the
// address where the user's cursor is positioned
func_t *nextFunc = get_next_func(addr);

if (nextFunc != NULL)
 msg("Next function starts at %a\n",
 nextFunc->startEA);

5.7.6 get_prev_func

Definition idaman func_t *
ida_export get_prev_func(ea_t ea)

Synopsis Returns a pointer to the func_t structure representing the function before the
one owning ea. Returns NULL if there is no previous function.

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <funcs.hpp>

ea_t addr = get_screen_ea();
// Get the function before the one containing the
// address where the user's cursor is positioned
func_t *prevFunc = get_prev_func(addr);

if (prevFunc != NULL)
 msg("Previous function starts at %a\n",
 prevFunc->startEA);

5.7.7 get_func_comment

Definition inline char *
get_func_comment(func_t *fn, bool repeatable)

Synopsis
Return any commentary added by the user or IDA for the function indicated by
*fn. If repeatable is true, repeatable comments are included. NULL is
returned if there are no comments.

Example

#include <funcs.hpp>

// Loop through all functions, displaying their comments
// including repeatable comments.
for (int i = 0; i < get_func_qty(); i++) {
 func_t *curFunc = getn_func(i);
 msg("%a: %s\n",
 curFunc->startEA,
 get_func_comment(curFunc, false));
}

5.8 Instructions

The functions below work with instructions within the currently disassembled file(s) in IDA. All are
defined in ua.hpp, except for generate_disasm_line(), which is defined in lines.hpp.

5.8.1 generate_disasm_line

Definition
idaman bool ida_export
generate_disasm_line(ea_t ea, char *buf, size_t bufsize,
int flags=0)

Synopsis
Fills *buf, limited by bufsize, with the disassembly at address ea. This text
is colour coded, so you need to use tag_remove() (see section 5.20.1) to get
printable text.

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <lines.hpp>

ea_t ea = get_screen_ea();
// Buffer that will hold the disassembly text
char buf[MAXSTR];

// Store the disassembled text in buf
generate_disasm_line(ea, buf, sizeof(buf)-1);

// This will appear as colour-tagged text (which will
// be mostly unreadable in IDA's Log window)
msg("Current line: %s\n", buf);

5.8.2 ua_ana0

Definition idaman int
ida_export ua_ana0(ea_t ea)

Synopsis

Disassemble ea. Returns the length of the instruction in bytes and fills the
global cmd structure with information about the instruction. If ea doesn't contain
an instruction, 0 is returned. This is a read-only function and doesn't modify the
IDA database.

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <ua.hpp>

ea_t ea = get_screen_ea();

if (ua_ana0(ea) > 0)
 msg("Instruction size: %d bytes\n", cmd.size);
else
 msg("Not at an instruction.\n");

5.8.3 ua_code

Definition idaman int
ida_export ua_code(ea_t ea)

Synopsis
Disassemble ea. Returns the length of the instruction in bytes, fills the global
cmd structure with information about the instruction and updates the IDA
database with the results. If ea doesn't contain an instruction, 0 is returned.

Example

#include <kernwin.hpp> // For read_selection() definition
#include <ua.hpp>

ea_t saddr, eaddr;
ea_t addr;

// Get the user selection
int selected = read_selection(&saddr, &eaddr);
if (selected) {
 // Re-analyse the selected address range
 for (addr = saddr; addr <= eaddr; addr++) {
 ua_code(addr);
 }
} else {
 msg("No selection.\n");
}

5.8.4 ua_outop

Definition idaman bool ida_export
ua_outop(ea_t ea, char *buf, size_t bufsize, int n)

Synopsis

Fills *buf, limited by bufsize, with the text representation of operand number
n to the instruction at ea and updates the IDA database with the instruction if it
isn't already defined. Returns false if operand n doesn't exist.

The text returned in *buf is colour coded, so you need to use tag_remove()
(see section 5.20.1) to get printable text.

Example

#include <ua.hpp>

// Get the entry point address
ea_t addr = inf.startIP;

// Fill cmd with information about the instruction
// at the entry point
ua_ana0(addr);

// Loop through each operand (until one of o_void type
// is reached), displaying the operand text.
for (int i = 0; cmd.Operands[i].type != o_void; i++) {
 char op[MAXSTR];
 ua_outop(addr, op, sizeof(op)-1, i);
 msg("Operand %d: %s\n", i, op);
}

5.8.5 ua_mnem

Definition idaman const char *ida_export
ua_mnem(ea_t ea, char *buf, size_t bufsize)

Synopsis
Fills *buf, limited by bufsize, with the mnemonic used in the instruction at
ea and updates the IDA database with the instruction if it isn't already defined.
Returns the *buf pointer or NULL if there is no instruction at ea.

Example

#include <segment.hpp> // For segment functions
#include <ua.hpp>

// Loop through each executable segment, displaying
// the mnemonic used in each instruction
for (int s = 0; s < get_segm_qty(); s++) {
 segment_t *seg = getnseg(s);
 if (seg->type == SEG_CODE) {
 int bytes = 0;

 // a should always be the address of an
 // instruction, which is why bytes is dynamic
 // depending on the result of ua_mnem()
 for (ea_t a = seg->startEA;
 a < seg->endEA; a += bytes) {
 char mnem[MAXSTR];
 const char *res;

 // Get the mnemonic at a, store it in mnem
 res = ua_mnem(a, mnem, sizeof(mnem)-1);

 // If this was an instruction, display
 // the mnemonic, set the bytes counter
 // to cmd.size, so that the next address
 // processed by ua_mnem() is the next
 // instruction.
 if (res != NULL) {
 msg("Mnemonic at %a: %s\n", a, mnem);
 bytes = cmd.size;
 } else {
 msg ("No code\n");
 // If there was no code at this address,
 // increment the byte counter by 1 so that
 // ua_mnem() works off the next address.
 bytes = 1;
 }
 }
 }
}

5.9 Cross Referencing

The following four functions are a part of the xrefblk_t structure, defined in xref.hpp. They
are used to populate and enumerate cross references to or from an address. All functions take
flags as an argument, which can be one of the following, as taken from xref.hpp:

#define XREF_ALL 0x00 // return all references
#define XREF_FAR 0x01 // don't return ordinary flow xrefs
#define XREF_DATA 0x02 // return data references only

An ordinary flow is when execution normally passes from one instruction to another without the
use of a CALL or JMP (or equivalent) instruction. If you are only interested in code cross
references (ignoring ordinary flows), then you would use XREF_ALL and check if the isCode
member of xrefblk_t is true in each case. Use XREF_DATA if you are only interested in data
references.

5.9.1 first_from

Definition bool
first_from(ea_t from, int flags)

Synopsis
Populates the xrefblk_t structure with the first cross reference from the
from address. flags dictates what cross references you are interested in.
Returns false if there are no references from from.

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <xref.hpp>

ea_t addr = get_screen_ea();
xrefblk_t xb;
if (xb.first_from(addr, XREF_ALL)) {
 // xb is now populated
 msg("First reference FROM %a is %a\n", xb.from,
 xb.to);
}

5.9.2 first_to

Definition bool
first_to(ea_t to,int flags)

Synopsis
Populates the xrefblk_t structure with the first cross reference to the to
address. flags dictates what cross references you are interested in. Returns
false if there are no references to to

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <xref.hpp>

ea_t addr = get_screen_ea();
xrefblk_t xb;
if (xb.first_to(addr, XREF_ALL)) {
 // xb is now populated
 msg("First reference TO %a is %a\n", xb.to,
 xb.from);
}

5.9.3 next_from

Definition bool
next_from(void)

Synopsis Populates the xrefblk_t structure with the next cross references from the
from address. Returns false if there are no more cross references.

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <lines.hpp> // For tag_remove() and
 // generate_disasm_line()
#include <xref.hpp>

xrefblk_t xb;
ea_t addr = get_screen_ea();

// Replicate IDA 'x' keyword functionality
for (bool res = xb.first_to(addr, XREF_FAR); res;
 res = xb.next_to()) {
 char buf[MAXSTR];
 char clean_buf[MAXSTR];

 // Get the disassembly text for the referencing addr
 generate_disasm_line(xb.from, buf, sizeof(buf)-1);

 // Clean out any format or colour codes
 tag_remove(buf, clean_buf, sizeof(clean_buf)-1);
 msg("%a: %s\n", xb.from, clean_buf);
}

5.9.4 next_to

Definition bool
next_to(void)

Synopsis Populates the xrefblk_t structure with the next cross references to the to
address. Returns false if there are no more cross references.

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <xref.hpp>

xrefblk_t xb;
ea_t addr = get_screen_ea();

// Get the first cross reference to addr
if (xb.first_to(addr, XREF_FAR)) {
 if (xb.next_to())
 msg("There are multiple references to %a\n",
 addr);
 else
 msg("The only reference to %a is at %a\n",
 addr, xb.from);
}

5.10 Names

The following functions deal with function (sub_*), location (loc_*) and variable (arg_*,
var_*) names, set by IDA or the user. All are defined in name.hpp. Register names are not
recognised by these functions.

5.10.1 get_name

Definition idaman char *ida_export
get_name(ea_t from, ea_t ea, char *buf, size_t bufsize)

Synopsis

Fill *buf, limited by bufsize, with the uncoloured name for ea. The *buf
pointer is returned if ea has a name, or NULL if it doesn't. If you are after a
name that is local to a function, from should be within the same function, or it
won't be seen. If you are not after a local name, from should just be BADADDR.

Example

#include <name.hpp>

char name[MAXSTR];

// Get the name of the entry point, should be start
// in most cases.
char *res = get_name(BADADDR,
 inf.startIP, // Entry point
 name,
 sizeof(name)-1);

if (res != NULL)
 msg("Name: %s\n", name);
else
 msg("No name for %a\n", inf.startIP);

5.10.2 get_name_ea

Definition idaman ea_t ida_export
get_name_ea(ea_t from, const char *name)

Synopsis

Return the address of where the name supplied in *name is defined. If you
are after a name that is local to a function, from should be within the same
function, or it won't be seen. If you are not after a local name, from should just
be BADADDR.

Example

#include <kernwin.hpp> // For askstr and get_screen_ea
#include <name.hpp>

// Get the cursor address
ea_t addr = get_screen_ea();

// Ask the user for a string (see kernwin.hpp), which
// will be the name we search for.
char *name = askstr(HIST_IDENT, // History identifier
 "start", // Default value
 "Please enter a name"); // Prompt

// Display the address that the name represents. You will
// get FFFFFFFF for stack variables and nonexistent
// names.
msg("Address: %a\n", get_name_ea(addr, name));

5.10.3 get_name_value

Definition idaman int ida_export
get_name_value(ea_t from, const char *name, uval_t *value)

Synopsis

Returns the value into *value, represented by the name *name, relative to
the address from. *value will contain either a stack offset or linear address.

If you are after a name that is local to a function, from should be within the
same function, or it won't be seen. If you are not after a local name, from
should just be BADADDR. The return value is one of the following, representing
the type of name it is. Taken from name.hpp:

#define NT_NONE 0 // name doesn't exist or has no value
#define NT_BYTE 1 // name is byte name (regular name)
#define NT_LOCAL 2 // name is local label
#define NT_STKVAR 3 // name is stack variable name
#define NT_ENUM 4 // name is symbolic constant
#define NT_ABS 5 // name is absolute symbol
 // (SEG_ABSSYM)
#define NT_SEG 6 // name is segment or segment register
 // name
#define NT_STROFF 7 // name is structure member
#define NT_BMASK 8 // name is a bit group mask name

Example

#include <kernwin.hpp> // For get_screen_ea() and askstr()
#include <name.hpp>

uval_t value;
ea_t addr = get_screen_ea();

// Ask the user for a name
char *name = askstr(HIST_IDENT, "start",
 "Please enter a name");

// Get the value of that name, relative to addr
int type = get_name_value(addr, name, &value);

// The type will correspond to one of the NT_ values
// defined in name.hpp.
// Value will be FFFFFFF4 for the first local variable
// or 8 for the first argument to a function. It could
// also be the linear address of the strcpy() definition
// for example.
msg("Type: %d, Value: %a\n", type, value);

5.11 Searching

The following functions are used for doing simple searching within the disassembled file(s) in IDA,
and are defined in search.hpp. There are also other search functions for specific search types
(errors, etc.) which can also be found in search.hpp. The search functions take flags, which
dictate how the search is conducted, what is searched for, etc. These flags are, as taken from
search.hpp:

#define SEARCH_UP 0x000 // only one of SEARCH_UP or
// SEARCH_DOWN can be specified

#define SEARCH_DOWN 0x001
#define SEARCH_NEXT 0x002 // Search for the next occurrence
#define SEARCH_CASE 0x004 // Make the search case-sensitive
#define SEARCH_REGEX 0x008 // Use the regular expression parser
#define SEARCH_NOBRK 0x010 // don't test ctrl-break
#define SEARCH_NOSHOW 0x020 // don't display the search progress
#define SEARCH_UNICODE 0x040 // treat strings as unicode
#define SEARCH_IDENT 0x080 // search for an identifier

// it means that the characters before
// and after the pattern can not be
// is_visible_char()

#define SEARCH_BRK 0x100 // return BADADDR if break is
// pressed during find_imm()

Typically, you'd just use SEARCH_DOWN to conduct a case-insensitive search, towards the bottom
of the file(s).

5.11.1 find_text (IDA 4.9 only)

Definition idaman ea_t ida_export
find_text(ea_t startEA, int y, int x, const char *ustr,

int sflag);

Synopsis
Searches the currently disassembled file(s), starting at startEA and x-
coordinate x, y-coordinate y (both can be 0), for the text *ustr. sflag can be
any of the previously mentioned flags.

Example

#include <kernwin.hpp> // For askstr() definition
#include <search.hpp>

char *s = askstr(0, "", "String to search for", NULL);

// Find the first occurrence of the string
ea_t foundAt = find_text(inf.minEA, 0, 0, s, SEARCH_DOWN);
while (foundAt != BADADDR) {
 msg("%s was found at %a\n", s, foundAt);
}

5.11.2 find_binary

Definition
idaman ea_t ida_export
find_binary(ea_t startea, ea_t endea, const char *ubinstr,
int radix, int sflag)

Synopsis

Searches between startea and endea for the string in *ubinstr. radix is
the numeric base (if you're searching for numbers), which can be 8 (octal), 10
(decimal) or 16 (hex). sflag can be any of the previously mentioned flags.

Note that this function doesn't search the disassembled text that you see in
IDA, but the binary itself.

The content of *ubinstr will differ depending on the type of search you are
conducting. For strings, the string itself must be wrapped in quotes ("), for
single characters, they must be wrapped in single quotes ('). A question-mark
(?) can be used to indicate a single wildcard byte.

Example #include <kernwin.hpp> // for askstr() and jumpto()
#include <search.hpp>

// Ask the user for a search string
char *name = askstr(HIST_SRCH, "",
 "Please enter a string");
char searchstring[MAXSTR];

// Encapsulate the search string in quotes
qsnprintf(searchstring, sizeof(searchstring)-1,
 "\"%s\"", name);

ea_t res = find_binary(inf.minEA, // Top of the file
 inf.maxEA, // Bottom of the file
 searchstring,
 0, // radix not applicable
 SEARCH_DOWN);

if (res != NULL) {
 msg("Match found at %a\n", res);

 // Move the cursor to the address
 jumpto(res);
} else {
 msg("No match found.\n");
}

5.12 IDB

The following functions are for working with IDA database (IDB) files, and can be found in
loader.hpp. Although there is no actual definition of the linput_t class, you need to call the
open_linput() (diskio.hpp) function to create an instance of the class, which some
functions use as an argument. You can also use make_linput() to convert a FILE pointer to a
linput_t instance; see loader.hpp for more information.

5.12.1 open_linput

Definition idaman linput_t *ida_export
open_linput(const char *file, bool remote)

Synopsis
Create an instance of the linput_t class for file path *file. If the file is
remote, set the remote argument to true. Returns NULL if it failed to open the
file.

Example

#include <kernwin.hpp> // For askfile_cv definition
#include <diskio.hpp>

// Prompt the user for a file
char *file = askfile_cv(0, "", "File to open", NULL);

// Open the file
linput_t *myfile = open_linput(file, false);

if (myfile == NULL)
 msg("Failed to open or corrupt file.\n");
else
 // Return the size of the opened file.
 msg("File size: %d\n", qlsize(myfile));

5.12.2 close_linput

Definition idaman void ida_export
close_linput(linput_t *li)

Synopsis Close the file represented by the linput_t instance, *li, created by
open_linput().

Example

#include <loader.hpp>

linput_t *myfile = open_linput("C:\\temp\\myfile.exe",
 false);
close_linput(myfile);

5.12.3 load_loader_module

Definition
idaman int ida_export
load_loader_module(linput_t *li, const char *lname, const
char *fname, bool is_remote)

Synopsis
Load a file into the current IDB, either as a linput_t instance, *li, or file
path in *fname, using the loader module *lname. If *li is NULL, *fname
must be supplied and vise versa. Returns 1 on success, 0 on failure.

Example

#include <kernwin.hpp> // For askfile_cv()
#include <loader.hpp>

// Prompt the user for a file to open.
char *file = askfile_cv(0, "", "DLL file..", NULL);

// Load it into the IDB using the PE loader module
int res = load_loader_module(NULL, "pe", file, false)

if (res < 1)
 msg("Failed to load %s as a PE file.\n", file);

5.12.4 load_binary_file

Definition

idaman bool ida_export
load_binary_file(const char *filename, linput_t *li,
ushort _neflags, long fileoff, ea_t basepara, ea_t binoff,
ulong nbytes);

Synopsis

Load a binary file *li, named *filename starting at offset, fileoff.
nflags is any of the NEF flags defined in loader.hpp. nbytes specifies
the number of bytes to load from the file, or 0 for the whole file.

basepara is the paragraph where this new binary will be loaded, and binoff
is the offset within that segment. You can safely set basepara to the adress
you want the file loaded at, and set binoff to 0.

Returns false if the load failed.

This is not the function you would use for loading a DLL or executable file (a
PE file for instance) into the IDB. For that, you would use use
load_loader_module() above.

Example

#include <kernwin.hpp> // For askfile_cv()
#include <diskio.hpp> // For open_linput()
#include <loader.hpp>

// Ask the user for a filename
char *file = askfile_cv(0, "", "DLL file..", NULL);

// Create a linput_t instance for that file
linput_t *li = open_linput(file, false);

// Load the file at the end of the currently loaded
// file (inf.maxEA).
bool status = load_binary_file(file,
 li,
 NEF_SEGS,
 0,
 inf.maxEA,
 0,
 0);

if (status)
 msg("Successfully loaded %s at %a\n", file,
 inf.maxEA);
else
 msg("Failed to load file.\n");

5.12.5 gen_file

Definition
idaman int ida_export
gen_file(ofile_type_t otype, FILE *fp, ea_t ea1, ea_t ea2,
int flags)

Synopsis Generate an output file, *fp, based on the currently open IDB file. ea1 and
ea2 are the start and end addresses respectively, however these are ignored
for some output types. otype must be one of the following, taken from
loader.hpp:

OFILE_MAP = 0, // MAP file
OFILE_EXE = 1, // Executable file
OFILE_IDC = 2, // IDC file
OFILE_LST = 3, // Disassembly listing
OFILE_ASM = 4, // Assembly
OFILE_DIF = 5; // Difference

flags can be any combination of the following, also taken from loader.hpp:

#define GENFLG_MAPSEG 0x0001 // map: generate map
 // of segments
#define GENFLG_MAPNAME 0x0002 // map: include dummy names
#define GENFLG_MAPDMNG 0x0004 // map: demangle names
#define GENFLG_MAPLOC 0x0008 // map: include local names
#define GENFLG_IDCTYPE 0x0008 // idc: gen only
 // information about types

#define GENFLG_ASMTYPE 0x0010 // asm&lst: gen
 // information about
 // types too
#define GENFLG_GENHTML 0x0020 // asm&lst: generate html
 // (ui_genfile_callback
 // will be used)
#define GENFLG_ASMINC 0x0040 // asm&lst: gen information
 // only about types

The function will return -1 if there was an error, or the number of lines
generated if it was a success. For OFILE_EXE files, it returns 0 for failure, 1 for
success.

Example

#include <loader.hpp>

// Open the output file
FILE *fp = qfopen("C:\\output.idc", "w");
// Generate an IDC output file
gen_file(OFILE_IDC, fp, inf.minEA, inf.maxEA, 0);
// Close the output file
qfclose(fp);

5.12.6 save_database

Definition idaman void ida_export
save_database(const char *outfile, bool delete_unpacked)

Synopsis

Save the database to the file path, *output. If delete_unpacked is false,
temporary unpacked files are not deleted. As this function doesn't return
anything, there is no way to determine if the save was successful, except for
testing whether the file exists after the function call is made.

Example

#include <loader.hpp>

msg("Saving database...");
char *outfile = "c:\\myidb.idb";
save_database(outfile, false);

// There was an error if the filesize is <= 0
if (qfilesize(outfile) <= 0)
 msg("failed.\n");
else
 msg("ok\n");

5.13 Flags

The functions below are for checking whether particular flags (see section 4.3) are set for a byte
within the currently disassembled file(s). They are all defined in bytes.hpp.

5.13.1 getFlags

Definition idaman flags_t ida_export
getFlags(ea_t ea)

Synopsis Returns the flags set for address ea. You will need to run this to obtain the
flags for an address to then use with functions like isHead(), isCode(), etc.

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <bytes.hpp>

msg("Flags for %a are %08x\n",
 get_screen_ea(),
 getFlags(get_screen_ea()));

5.13.2 isEnabled

Definition idaman bool ida_export
isEnabled(ea_t ea)

Synopsis Does the address, ea, exist within the currently disassembled file(s)?

Example

#include <kernwin.hpp> // For askaddr() definition
#include <bytes.hpp>

ea_t addr;
askaddr(&addr, "Address to look for:");

if (isEnabled(addr))
 msg("%a found within the currently opened file(s).",
 addr);
else
 msg("%a was not found.\n");

5.13.3 isHead

Definition inline bool idaapi
isHead(flags_t F)

Synopsis Does the flagset, F, denote the start of code or data?

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <bytes.hpp>

ea_t addr = get_screen_ea();

// Cycle through 20 bytes from the cursor position
// printing a message if the byte is a head byte.
for (int i = 0; i < 20; i++) {
 flags_t flags = getFlags(addr);
 if (isHead(flags))
 msg("%a is a head (flags = %08x).\n",
 addr, flags);
 addr++;
}

5.13.4 isCode

Definition inline bool idaapi
isCode(flags_t F)

Synopsis
Does the flagset, F, denote the start of an instruction? This is the same as
isHead(), but only returns true for code, not data. Therefore, if used on a
code byte that is not a head byte, it will return false.

Example

#include <segment.hpp> // For segment functions
#include <bytes.hpp>

for (int i = 0; i < get_segm_qty(); i++) {
 segment_t *seg = getnseg(i);
 if (seg->type == SEG_CODE) {
 // Look for any bytes in the code segment that
 // aren't code.
 for (ea_t a = seg->startEA; a < seg->endEA; a++) {
 flags_t flags = getFlags(a);
 if (isHead(flags) && !isCode(flags))
 msg("Non-code at %a in segment: %s.\n",
 a,
 get_segm_name(seg));
 }
 }
}

5.13.5 isData

Definition inline bool idaapi
isData(flags_t F)

Synopsis
Does the flagset, F, denote the start of some data? This is the same as
isHead(), but only returns true for data, not code. Therefore, if used on a
data byte that is not a head byte, it will return false.

Example

#include <segment.hpp> // For segment functions
#include <bytes.hpp>

for (int i = 0; i < get_segm_qty(); i++) {
 segment_t *seg = getnseg(i);
 if (seg->type == SEG_DATA) {
 // Look for any bytes in the data segment that
 // aren't data (possibly code).
 for (ea_t a = seg->startEA; a < seg->endEA; a++) {
 flags_t flags = getFlags(a);
 if (isHead(flags) && !isData(flags))
 msg("Non-data at %a in segment: %s.\n",
 a,
 get_segm_name(seg));
 }
 }
}

5.13.6 isUnknown

Definition inline bool idaapi
isUnknown(flags_t F)

Synopsis Does the flagset, F, denote a byte that hasn't been successfully analysed by
IDA?

Example

#include <segment.hpp> // For segment functions
#include <bytes.hpp>

// Loop through every segment
for (int i = 0; i < get_segm_qty(); i++) {
 segment_t *seg = getnseg(i);
 // Look for any unexplored bytes in this segment
 for (ea_t a = seg->startEA; a < seg->endEA; a++) {
 flags_t flags = getFlags(a);
 if (isUnknown(flags))
 msg("Unknown bytes at %a in segment: %s.\n",
 a,
 get_segm_name(seg));
 }
}

5.14 Data

When working with a disassembled file, it can often be very useful to bypass the disassembler
and work directly with the bytes in the binary file itself. IDA provides the functionality to do this
with the below functions (plus some more). All of the below are defined in bytes.hpp. These
functions work with bytes, however there are also functions to work with words, longs and qwords
(get_word(), patch_word() and so on), which are also to be found in bytes.hpp. Aside
from using these functions to read data from the binary file itself, they can also be used to read
process memory while a process is executing under the debugger. More on this under the
Debugger functions section.

5.14.1 get_byte

Definition idaman uchar ida_export
get_byte(ea_t ea)

Synopsis

Returns the byte at address ea within the disassembled file(s) currently open in
IDA. Returns BADADDR if ea doesn't exist. Also available for working with larger
chunks is get_word(), get_long() and get_qword(). Use
get_many_bytes() for working with multiple byte chunks.

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <bytes.hpp>

// Display the byte value for the current cursor
// position. The values returned should correspond
// to those in your IDA Hex view.
msg("%x\n", get_byte(get_screen_ea()));

5.14.2 get_many_bytes

Definition idaman bool ida_export
get_many_bytes(ea_t ea, void *buf, ssize_t size)

Synopsis Fetch size bytes starting at ea, and store them into *buf.

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <bytes.hpp>

char string[MAXSTR];
flags_t flags = getFlags(get_screen_ea());

// Only get a string if we're at actual data.
if (isData(flags)) {
 // Get a string from the binary
 get_many_bytes(get_screen_ea(),
 string,
 sizeof(string)-2);
 // NULL terminate the string, if not already
 // terminated in the binary (so strlen doesn't barf)
 string[MAXSTR-1] = '\0';
 msg("String length: %d\n", strlen(string));
}

5.14.3 patch_byte

Definition idaman void ida_export
patch_byte(ea_t ea, ulong x)

Synopsis

Replace the byte at ea with x. The original byte is saved to the IDA database,
and can be retrieved using get_original_byte() (see bytes.hpp). To
not save the original byte, use put_byte(ea_t ea, ulong x) instead.
Also available for working with larger chunks is put_word(), put_long()
and put_qword(). Use put_many_bytes() for working with multiple byte
chunks.

Example

#include <kernwin.hpp> // For get_screen_ea()
#include <bytes.hpp>

// Get the flags for the byte at the cursor position.
flags_t flags = getFlags(get_screen_ea());

// Replace the instruction at the cursor position with
// a NOP instruction (0x90).
// Unless used carefully, your executable will probably
// not work correctly after this :-)
if (isCode(flags))
 patch_byte(get_screen_ea(), 0x90);

5.14.4 patch_many_bytes

Definition idaman void ida_export
patch_many_bytes(ea_t ea, const void *buf, size_t size)

Synopsis Replace size bytes at ea with the contents of *buf.

Example

#include <kernwin.hpp> // For get_screen_ea() et al
#include <bytes.hpp>

// Prompt the user for an address, then a string
ea_t addr = get_screen_ea();
askaddr(&addr, "Address to put string:");
char *string = askstr(0, "", "Please enter a string");

// Write the user supplied string to the address
// the user specified.
patch_many_bytes(addr, string, strlen(string));

5.15 I/O

As mentioned in section 5.1, a lot of standard C library functions for I/O have IDA SDK
equivalents, and it's recommended you use them instead of their standard C counterparts. These
are all defined in diskio.hpp.

5.15.1 fopenWT

Definition idaman FILE *ida_export
fopenWT(const char *file)

Synopsis
Open the text file, *file, in write mode, return a FILE pointer or NULL if
opening the file failed. To open the file in read mode, use fopenRT(), and for
binary files, replace the R with W. For read/write, use fopenM().

Example

#include <diskio.hpp>

FILE *fp = fopenWT("c:\\temp\\txtfile.txt");
if (fp == NULL)
 warning("Failed to open output file.");

5.15.2 openR

Definition idaman FILE *ida_export
openR(const char *file)

Synopsis
Open the binary file, *file, in read-only mode, return a FILE pointer or exit
(display an error and close IDA) if it fails. To open a text file in read-only mode,
exiting on failure, use openRT(), for read-write use openM().

Example
#include <diskio.hpp>

FILE *fp = openR("c:\\temp\\binfile.exe");

5.15.3 ecreate

Definition idaman FILE *ida_export
ecreate(const char *file)

Synopsis
Create the binary file, *file, returning a FILE pointer of the file for write only.
Displays an error and exits if it is unable to create the file. To create a text file,
use ecreateT().

Example
#include <diskio.hpp>

FILE *fp = ecreate("c:\\temp\\newbinfile.exe");

5.15.4 eclose

Definition idaman void ida_export
eclose(FILE *fp)

Synopsis Closes the file represented by FILE pointer *fp. Displays an error and exits if
it is unable to close the file.

Example

#include <diskio.hpp>

// Open the file first.
FILE *fp = openR("c:\\temp\\binfile.exe");

// Close it
eclose(fp);

5.15.5 eread

Definition idaman void ida_export
eread(FILE *fp, void *buf, ssize_t size)

Synopsis Read size bytes from file represented by FILE pointer *fp, into buffer *buf.
If the read is unsuccessful, an error is displayed followed by exiting IDA.

Example

#include <diskio.hpp>

char buf[MAXSTR];

// Open the text file
FILE *fp = openRT("c:\\temp\\txtfile.txt");

// Read MAXSTR bytes from the start of the file.
eread(fp, buf, MAXSTR-1);

eclose(fp);

5.15.6 ewrite

Definition idaman void ida_export
ewrite(FILE *fp, const void *buf, ssize_t size)

Synopsis Write size bytes of *buf to the file represented by FILE pointer *fp. If the
write operation fails, an error is displayed followed by exiting IDA.

Example

#include <kernwin.hpp> // For read_selection()
#include <bytes.hpp> // For get_many_bytes()
#include <diskio.hpp>

char buf[MAXSTR];
ea_t saddr, eaddr;

// Create the binary dump file
FILE *fp = ecreate("c:\\bindump");

// Get the address range selected, or return false if
// there was no selection
if (read_selection(&saddr, &eaddr)) {
 int size = eaddr - saddr;
 // Dump the selected address range to a binary file
 get_many_bytes(saddr, buf, size);
 ewrite(fp, buf, size);
}
eclose(fp);

5.16 Debugging

Unlike most of the functions covered so far, the next three sections are for working with a binary
during execution. This section in particular is for high level operations (like process and thread
control) on a binary/process. Debugging and tracing is covered in the following two sections. All
functions below are defined in dbg.hpp with the exception of invalidate_dbg_contents()
and invalidate_dbg_config(), which are defined in bytes.hpp. To get the most out of the
examples, you should run them (i.e. invoke your plug-in) whilst a binary is being debugged in IDA.

You will probably notice that all of these functions aren't prefixed with ida_export. They don't
need to be because they are all inlined wrappers to callui(), and use event notifications to
carry out their respective functionality.

5.16.0 A Note on Requests

Unlike most functions in the SDK, most debugger functions (and some tracing functions too)
come in two forms; their normal asynchronous form, for example run_to(), and a synchronous,
or request form, like request_run_to(). Both forms of the function will take the same
arguments, but it's the way they carry out the respective operation that makes the difference.

The synchronous form of the function (request_) will enter the function into a queue, and
eventually be executed by IDA when you call run_requests(). The other, asynchronous form,
will run straight away, just like a normal function.

The synchronous form of a function can be very handy when you want to queue a bunch of things
to be run by IDA in one hit. 5.17.5 is a good example of this, where deleting a bunch of
breakpoints using del_bpt() would fail unless done synchronously, as the ID number of the
breakpoints would be re-organised by the time you went to fetch the next one using
getn_bpt(). Something important worth noting is that you must use the synchronous form of a
function when you are in an debugger event notification handler (see section 4.5, specifically
4.5.3).

All functions in sections 5.16, 5.17 and 5.18 that are also available as requests will have a *
following the function name.

5.16.1 run_requests

Definition bool idaapi
run_requests(void)

Synopsis Runs any requests (synchronous functions) that have been queued.

Example

#include <dbg.hpp>

// Run to the entry point of the binary
request_run_to(inf.startIP);
// Enable function tracing
request_enable_func_trace();

// Run the above requests
run_requests();

5.16.2 get_process_state

Definition int idaapi
get_process_state(void)

Synopsis
Returns the state of the process currently being debugged. If the process is
suspended, -1 is returned, 1 if the process is running or 0 if there is no
process running under the debugger.

Example

#include <dbg.hpp>

switch (get_process_state()) {
 case 0:
 msg("No process running.\n");
 break;
 case -1:
 msg("Process is suspended.\n");
 break;
 case 1:
 msg("Process is running.\n");
 break;
 default:
 msg("Unknown status.\n");
}

5.16.3 get_process_qty

Definition int idaapi
get_process_qty(void)

Synopsis
Returns the number of running processes matching the image of the
executable currently open in IDA. This function also needs to be called to
initialise the process snapshot, which is used by IDA for populating data
structures utilised by other process-related functions.

Example

#include <dbg.hpp>

msg("There are %d processes running.\n",
 get_process_qty());

5.16.4 get_process_info

Definition process_id_t idaapi
get_process_info(int n, process_info_t *process_info);

Synopsis
Populate *process_info with information about process number n (this is
not the PID). The process ID of the process number n is returned. If
*process_info is NULL, only the PID of the process is returned.

Example

#include <dbg.hpp>

// Only get the info if a process is actually running..
if (get_process_qty() > 0) {
 process_info_t pif;
 // Populate pif
 get_process_info(0, &pif);
 msg("ID: %d, Name: %s\n", pif.pid, pif.name);
} else {
 msg("No process running!\n");
}

5.16.5 start_process *

Definition
int idaapi
start_process(const char *path = NULL, const char *args =
NULL, const char *sdir = NULL);

Synopsis

Start debugging the process *path, with the arguments *args, in the
directory *sdir. If any of the arguments are NULL, they are taken from the
process options specified under Debugger->Process Options…. This is
essentially the same as pressing F9 in IDA.

Example

#include <kernwin.hpp> // For askstr()
#include <dbg.hpp>

// Ask the user for arguments to supply.
char *args = askstr(HIST_IDENT, "", "Arguments");

// Run the process with those arguments
start_process(NULL, args, NULL);

5.16.6 continue_process *

Definition bool idaapi
continue_process(void)

Synopsis
Continue the execution of a process. Returns false if continuing the process
fails. This is equivalent to pressing F9 in IDA when a process is in the
suspended state (breakpoint-hit or suspended).

Example

#include <dbg.hpp>

// Continue running the process when the user
// involkes this plug-in.
if (continue_process())
 msg("Continuing process..\n");
else
 msg("Failed to continue process execution.\n");

5.16.7 suspend_process *

Definition bool idaapi
suspend_process(void)

Synopsis
Suspend the process currently being debugged. Returns false if suspending
the process failed. This is the same as pressing the 'Pause Process' button in
IDA.

Example

#include <dbg.hpp>

// Suspend the process being debugged.
if (suspend_process())
 msg("Suspended process.\n");
else
 msg("Failed to suspend process.\n");

5.16.8 attach_process *

Definition
int idaapi
attach_process(process_id_t pid=NO_PROCESS, int event_id=-
1)

Synopsis

Attach to the process with PID pid. The process being attached to must be the
same executable image as the one currently being disassembled in IDA. If the
pid argument is NO_PROCESS, the user is prompted with a list of potential
processes to attach to. The possible return codes are as follows, which is taken
from dbg.hpp:

// -2 - impossible to find a compatible process
// -1 - impossible to attach to the given process
// (process died, privilege
// needed, not supported by the debugger
// plugin, ...)
// 0 - the user cancelled the attaching to the
// process
// 1 - the debugger properly attached to the
// process

Example

#include <dbg.hpp>

// Present the user with a list of processes to
// attach to. If there is no executable running that
// matches what's open in IDA, no dialog box will
// be presented.
int err;
if ((err = attach_process(NO_PROCESS)) == 1)
 msg("Successfully attached to process.\n");
else
 msg("Unable to attach, error: %d\n", err);

5.16.9 detach_process *

Definition bool idaapi
detach_process(void)

Synopsis
Detach from the process currently being debugged. This can be a process that
was attached to or run through IDA. Returns false if it was unable to detach.
Detaching from a process is only supported on Windows XP SP2 and Windows
2003.

Example

#include <dbg.hpp>

// Detach from the debugged process.
if (detach_process())
 msg("Successfully detached from process.\n");
else
 msg("Failed to detach.\n");

5.16.10 exit_process *

Definition bool idaapi
exit_process(void)

Synopsis Terminate the process currently being debugged. Returns false if it was unable
to terminate the process.

Example

#include <dbg.hpp>

// Terminate the debugged process.
if (exit_process())
 msg("Successfully terminated the process.\n");
else
 msg("Failed to terminate the proces.\n");

5.16.11 get_thread_qty

Definition int idaapi
get_thread_qty(void)

Synopsis Returns the number of threads that exist in the debugged process.

Example

#include <dbg.hpp>

// Only display if there is a process being debugged.
if (get_process_qty() > 0)
 msg("Threads running: %d\n", get_thread_qty());

5.16.12 get_reg_val

Definition bool idaapi
get_reg_val(const char *regname, regval_t *regval)

Synopsis
Get the value stored in register *regname and store it in *regval. Returns
false if it was unable to retrieve the value from the register. The register name
is case insenstive.

Example

#include <dbg.hpp>

// Process needs to be suspended for this to work.

regval_t eax;
regval_t eax_upper;
char *regname = "eax";
char *regname_upper = "EAX";

// Prooving that the register name is case insenstive
if (get_reg_val(regname, &eax))
 msg("eax = %08a\n", eax.ival);

if (get_reg_val(regname_upper, &eax_upper))
 msg("EAX = %08a\n", eax_upper.ival);

5.16.13 set_reg_val *

Definition bool idaapi
set_reg_val(const char *regname, const regval_t *regval)

Synopsis

Set the register *regname to value *regval in the current thread. If
the write fails, false is returned. Like get_reg_val(), *regname is case
insensitive. Unlike other asynchronous functions, this is safe to call from a
debug event notification handler.

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <dbg.hpp>

// Suspend the currently executing process.
suspend_process();

// Continue execution from the user's cursor position.
ea_t addr = get_screen_ea();
char *regname = "EIP";

if (set_reg_val(regname, addr)) {
 msg("Continuing execution from %a\n", addr);
 continue_process();
}

5.16.14 invalidate_dbgmem_contents

Definition idaman void ida_export
invalidate_dbgmem_contents(ea_t ea, asize_t size)

Synopsis

Invalidate size bytes of memory, starting at ea. If you want to invalidate the
whole of a processes memory, set ea to BADADDR and size to 0.

Invalidating memory contents is essentially flushing the IDA kernel's memory
cache for a process, which ensures you are accessing the latest memory
contents from a processes memory. You should call this function after a
process is suspended, or if you suspect the memory contents have changed.

Example

#include <dbg.hpp>
#include <bytes.hpp>

// Process must be suspended for this to work

// Get the address stored in the ESP register
regval_t esp;
get_reg_val("ESP", &esp);

// Get the value at the address stored in the ESP reg.
uchar before = get_byte(esp.ival);

// Invalidate memory contents
invalidate_dbgmem_contents(BADADDR, 0);

// Re-fetch contents of the address stored in ESP
uchar after = get_byte(esp.ival);

msg("%08a: Before: %a, After: %a\n",
 esp.ival, before, after);

5.16.15 invalidate_dbgmem_config

Definition idaman void ida_export
invalidate_dbgmem_config(void)

Synopsis

Like invalidate_dbgmem_contents(), you use this function to ensure
IDA is looking at the latest memory configuration. You need to run this function
if the debugged process has allocated or deallocated memory since it was last
suspended. This function also flushes the IDA memory cache, however is
much slower than invalidate_dbgmem_contents().

Example

#include <dbg.hpp>
#include <bytes.hpp>

regval_t esp;

// Get ESP before invalidate config
get_reg_val("ESP", &esp);
uchar before = get_byte(esp.ival);

// Invalidate memory config
invalidate_dbgmem_config();

// After invalidate
uchar after = get_byte(esp.ival);
msg("%08a Before: %a, After: %a\n",
 esp.ival, before, after);

5.16.16 run_to *

Definition bool idaapi
run_to(ea_t ea)

Synopsis
Run the process until execution gets to address ea. If there is no process
running, the currently disassembled file is executed. Returns false if it was
unable to execute the process.

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <dbg.hpp>

// Replicate F4 functionality
if (!run_to(get_screen_ea()))
 msg("Failed to run to %a\n", get_screen_ea());

5.16.17 step_into *

Definition bool idaapi
step_into(void)

Synopsis
Run one instruction within the current thread of the debugged process. This is
the same as F7 in IDA. Returns false if it was unable to step into the
instruction.

Example

#include <dbg.hpp>

// Go to the entry point (queued)
request_run_to(inf.startIP);

// Run 20 instructions (queued)
for (int i = 0; i < 20; i ++)
 request_step_into();

// Run through the queue
run_requests();

5.16.18 step_over *

Definition bool idaapi
step_over(void)

Synopsis
Run one instruction within the current thread of the debugged process, but
don't step into functions, treat them as one instruction. This is the same as F8
in IDA. Returns false if it was unable to step over the instruction.

Example

#include <dbg.hpp>

// This can only run when the process is suspended

// Step over 5 instructions. This needs to be done as
// a request, otherwise only one step will execute.
for (int i = 0; i < 5; i ++)
 request_step_over();
run_requests();

5.16.19 step_until_ret *

Definition bool idaapi
step_until_ret(void)

Synopsis Execute each instruction in the current thread of the debugged process until
the current function returns. This is the same as CTRL-F7 in IDA.

Example

#include <dbg.hpp>

// Get the address of where the function named
// 'myfunc' is.
ea_t addr = get_name_ea(BADADDR, "myfunc");

if (addr != BADADDR) {
 // Run until execution hits myfunc (queued)
 request_run_to(addr);
 // Step into the function (queued)
 request_step_into();
 // Continue executing until myfunc returns (queued)
 request_step_until_ret();

 // Run through the queue
 run_requests();
}

5.17 Breakpoints

An essential part of debugging is having the ability to set and manipulate breakpoints, which can
be set on any address within a process memory space and be hardware or software breakpoints.
The following set of functions work with breakpoints, and are defined in dbg.hpp.

5.17.1 get_bpt_qty

Definition int idaapi
get_bpt_qty(void)

Synopsis Return the current number of breakpoints that exist (regardless of whether they
are enabled or not).

Example

#include <dbg.hpp>

msg("There are currently %d breakpoints set.\n",
 get_bpt_qty());

5.17.2 getn_bpt

Definition bool idaapi
getn_bpt(int n, bpt_t *bpt)

Synopsis Fill *bpt with information about breakpoint number n. Returns false if there is
no such breakpoint number.

Example

#include <dbg.hpp>

// Go through all breakpoints, displaying the address
// of where they are set.
for (int i = 0; i < get_bpt_qty(); i++) {
 bpt_t bpt;
 if (getn_bpt(i, &bpt))
 msg("Breakpoint found at %a\n", bpt.ea);
}

5.17.3 get_bpt

Definition bool idaapi
get_bpt(ea_t ea, bpt_t *bpt)

Synopsis
Fill *bpt with information about the breakpoint set at ea. If no breakpoint is set
at ea, false is returned. If *bpt is NULL, this function simply returns true or
false depending if a breakpoint is set at ea.

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <dbg.hpp>

if (get_bpt(get_screen_ea(), NULL))
 msg("Breakpoint is set at %a.\n", get_screen_ea());
else
 msg("No breakpoint set at %a.\n", get_screen_ea());

5.17.4 add_bpt *

Definition
bool idaapi
add_bpt(ea_t ea, asize_t size = 0, bpttype_t type =
BPT_SOFT)

Synopsis

Add a breakpoint at ea of type type and size size. Returns false if it was
unable to set the breakpoint. Refer to section 4.4.2 for an explanation of
different breakpoint types. size is irrelevant when setting software
breakpoints.

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <dbg.hpp>

// Add a software breakpoint at the cursor position
if (add_bpt(get_screen_ea(), 0, BPT_SOFT))
 msg("Successfully set software breakpoint at %a\n",
 get_screen_ea());

5.17.5 del_bpt *

Definition bool idaapi
del_bpt(ea_t ea)

Synopsis Delete the breakpoint defined at ea. If there is no breakpoint defined there,
returns false.

Example

#include <dbg.hpp>

// Go through all breakpoints, deleting each one.
for (int i = 0; i < get_bpt_qty(); i++) {
 bpt_t bpt;
 if (getn_bpt(i, &bpt)) {
 // Because we are performing many delete
 // operations, queue the request, otherwise the
 // getn_bpt call will fail when the id
 // numbers change after the delete operation.
 if (request_del_bpt(bpt.ea))
 msg("Queued deleting breakpoint at %a\n",
 bpt.ea);
 }
}

// Run through request queue
run_requests();

// Make sure there are no breakpoints left over
if (get_bpt_qty() > 0)
 msg("Failed to delete all breakpoints.\n");

5.17.6 update_bpt

Definition bool idaapi
update_bpt(const bpt_t *bpt)

Synopsis Update modifiable elements of the breakpoint represented by *bpt. Returns
false if the modification was unsuccessful.

Example

#include <dbg.hpp>

// Loop through all breakpoints
for (int i = 0; i < get_bpt_qty(); i++) {
 bpt_t bpt;
 if (getn_bpt(i, &bpt)) {

 // Change the breakpoint to not pause
 // execution when it's hit
 bpt.flags ^= BPT_BRK;

 // Change the breakpoint to a trace breakpoint
 bpt.flags |= BPT_TRACE;

 // Run a little IDC every time it's hit
 qstrncpy(bpt.condition,
 "Message(\"Trace hit!\")",
 sizeof(bpt.condition));

 // Update the breakpoint
 if (!update_bpt(&bpt))
 msg("Failed to update breakpoint at %a\n",
 bpt.ea);
 }
}

5.17.7 enable_bpt *

Definition bool idaapi
enable_bpt(ea_t ea, bool enable = true)

Synopsis
Enable or disable the breakpoint set at ea. If no breakpoint is defined at ea, or
there was an error enabling/disabling the breakpoint, false is returned. If
enable is set to false, the breakpoint is disabled.

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <dbg.hpp>

bpt_t bpt;

// If a breakpoint exists at the user's cursor, disable
// it.
if (get_bpt(get_screen_ea(), &bpt)) {
 if (enable_bpt(get_screen_ea(), false))
 msg("Disabled breakpoint.\n");
}

5.18 Tracing

The functions available for tracing mostly revolve around checking whether a certain type of
tracing is enabled, enabling or disabling a type of tracing and retrieving trace events. All the
below are defined in dbg.hpp.

5.18.1 set_trace_size

Definition bool idaapi
set_trace_size(int size)

Synopsis

Set the tracing buffer size to size. Returns false if there was an error
allocating size. Setting size to 0 sets an unlimited buffer size (dangerous). If
you set size to a value lower than the current number of trace events, size
events are deleted.

Example

#include <dbg.hpp>

// 1000 trace events allowed
if (set_trace_size(1000))
 msg("Successfully set the trace buffer to 1000\n");

5.18.2 clear_trace *

Definition void idaapi
clear_trace(void)

Synopsis Clear the trace buffer.

Example

#include <dbg.hpp>

// Start our plug-in with a clean slate
clear_trace();

5.18.3 is_step_trace_enabled

Definition bool idaapi
is_step_trace_enabled(void)

Synopsis Returns true if step tracing is currently enabled.

Example

#include <dbg.hpp>

if (is_step_trace_enabled())
 msg("Step tracing is enabled.\n");

5.18.4 enable_step_trace *

Definition bool idaapi
enable_step_trace(int enable = true)

Synopsis Enable step tracing. If enable is set to false, step tracing is disabled.

Example

#include <dbg.hpp>

// Toggle step tracing
if (is_step_trace_enabled())
 enable_step_trace(false);
else
 enable_step_trace();

5.18.5 is_insn_trace_enabled

Definition bool idaapi
is_insn_trace_enabled(void)

Synopsis Returns true if instruction tracing is enabled.

Example

#include <dbg.hpp>

if (is_insn_trace_enabled())
 msg("Instruction tracing is enabled.\n");

5.18.6 enable_insn_trace *

Definition bool idaapi
enable_insn_trace(int enable = true)

Synopsis Enable instruction tracing. If enable is set to false, instruction tracing is
disabled.

Example

#include <dbg.hpp>

// Toggle instruction tracing
if (is_insn_trace_enabled())
 enable_insn_trace(false);
else
 enable_insn_trace();

5.18.7 is_func_trace_enabled

Definition bool idaapi
is_func_trace_enabled(void)

Synopsis Returns true if function tracing is enabled.

Example

#include <dbg.hpp>

if (is_func_trace_enabled())
 msg("Function tracing is enabled.\n");

5.18.8 enable_func_trace *

Definition bool idaapi
enable_func_trace(int enable = true)

Synopsis Enable function tracing. If enable is set to false, function tracing is disabled.

Example

#include <dbg.hpp>

// Toggle function tracing
if (is_func_trace_enabled())
 enable_func_trace(false);
else
 enable_func_trace();

5.18.9 get_tev_qty

Definition int idaapi
get_tev_qty(void)

Synopsis Returns the number of trace events in the trace buffer.

Example

#include <dbg.hpp>

msg("There are %d trace events in the trace buffer.\n",
 get_tev_qty());

5.18.10 get_tev_info

Definition bool idaapi
get_tev_info(int n, tev_info_t *tev_info)

Synopsis Fills *tev_info about the trace buffer entry number n. Returns false if there is
no such trace event number n.

Example

#include <dbg.hpp>

// Loop through all trace events
for (int i = 0; i < get_tev_qty(); i++) {
 tev_info_t tev;
 // Get the trace event information
 get_tev_info(i, &tev);

 // Display the address the event took place
 msg("Trace event occurred at %a\n", tev.ea);
}

5.18.11 get_insn_tev_reg_val

Definition
bool idaapi
get_insn_tev_reg_val(int n, const char *regname, regval_t
*regval)

Synopsis

Store the value of register *regname into *regval when instruction trace
event number n happened, before execution of the instruction. Returns false if
the event wasn't an instruction trace event.

See get_insn_tev_reg_result() for obtaining registers after execution.

Example

#include <dbg.hpp>

// Loop through all trace events
for (int i = 0; i < get_tev_qty(); i++) {
 regval_t esp;
 tev_info_t tev;

 // Get the trace event information
 get_tev_info(i, &tev);

 // If it's an instruction trace event...
 if (tev.type == tev_insn) {
 // Get ESP, store into &esp
 if (get_insn_tev_reg_val(i, "ESP", &esp))
 // Display the value of ESP
 msg("TEV #%d before exec: %a\n", i, esp.ival);
 else
 msg("No ESP change for TEV #%d\n", i);
 }
}

5.18.12 get_insn_tev_reg_result

Definition
bool idaapi
get_insn_tev_reg_result(int n, const char *regname,
regval_t *regval)

Synopsis

Store the value of register *regname into *regval when instruction trace
event number n happened, after execution of the instruction. Returns false if
the register wasn't modified or n doesn't represent an instruction trace event.

See get_insn_tev_reg_val() for obtaining registers before execution.

Example

#include <dbg.hpp>

// Loop through all trace events
for (int i = 0; i < get_tev_qty(); i++) {
 regval_t esp;
 tev_info_t tev;

 // Get the trace event information
 get_tev_info(i, &tev);

 // If it's an instruction trace event...
 if (tev.type == tev_insn) {
 // Get ESP, store into &esp
 if (get_insn_tev_reg_result(i, "ESP", &esp))
 // Display the value of ESP
 msg("TEV #%d after exec: %a\n", i, esp.ival);
 else
 msg("No ESP change for TEV #%d\n", i);
 }
}

5.18.13 get_call_tev_callee

Definition ea_t idaapi
get_call_tev_callee(int n)

Synopsis
Returns the address of the function called for function trace event number n.
Returns BADADDR if there is no such function trace event number n. The type
of the function trace event must be tev_call.

Example

#include <dbg.hpp>

// Loop through all trace events
for (int i = 0; i < get_tev_qty(); i++) {
 regval_t esp;
 tev_info_t tev;

 // Get the trace event information
 get_tev_info(i, &tev);

 // If it's an function call trace event...
 if (tev.type == tev_call) {
 ea_t addr;
 // Get ESP, store into &esp
 if ((addr = get_call_tev_callee(i)) != BADADDR)
 msg("Function at %a was called\n", addr);
 }
}

5.18.14 get_ret_tev_return

Definition ea_t idaapi
get_ret_tev_return(int n)

Synopsis
Returns the address of the calling function for function trace event number n.
Returns BADADDR if there is no such function trace event number n. The type
of the function trace event must be tev_ret.

Example #include <dbg.hpp>

// Loop through all trace events
for (int i = 0; i < get_tev_qty(); i++) {
 tev_info_t tev;

 // Get the trace event information
 get_tev_info(i, &tev);

 // If it's an function return trace event...
 if (tev.type == tev_ret) {

 ea_t addr;
 if ((addr = get_ret_tev_return(i)) != BADADDR)
 msg("Function returned to %a\n", addr);
 }
}

5.18.15 get_bpt_tev_ea

Definition ea_t idaapi
get_bpt_tev_ea(int n)

Synopsis Returns the address of the read/write/execution trace number n. Returns false
if the trace event wasn't that of a read/write/execution trace.

Example

#include <dbg.hpp>

// Loop through all trace events
for (int i = 0; i < get_tev_qty(); i++) {
 tev_info_t tev;

 // Get the trace event information
 get_tev_info(i, &tev);

 // If it's an breakpoint trace event...
 if (tev.type == tev_bpt) {
 ea_t addr;
 if ((addr = get_bpt_tev_ea(i)) != BADADDR)
 msg("Breakpoint trace hit at %a\n", addr);
 }
}

5.19 Strings

The following functions are used for reading the list of strings in IDA's Strings window, which is
derived from strings found in the currently disassembled file(s). The below functions are defined
in strlist.hpp.

5.19.1 refresh_strlist

Definition idaman void ida_export
refresh_strlist(ea_t ea1, ea_t ea2)

Synopsis Refresh the list of strings in IDA's Strings window. Search between ea1 and
ea2 in the currently disassembled file(s) for these strings.

Example

#include <strlist.hpp>

// Refresh the string list.
refresh_strlist();

5.19.2 get_strlist_qty

Definition idaman size_t ida_export
get_strlist_qty(void)

Synopsis Returns the number of strings found in the currently disassembled file(s).

Example

#include <strlist.hpp>

msg("%d strings were found in the currently open file(s)",
 get_strlist_qty());

5.19.3 get_strlist_item

Definition idaman bool ida_export
get_strlist_item(int n, string_info_t *si)

Synopsis Fills *si with information about string number n. Returns false if there is no
such string number n.

Example

#include <strlist.hpp>

int largest = 0;

// Loop through all strings, finding the largest one.
for (int i = 0; i < get_strlist_qty(); i++) {
 string_info_t si;
 get_strlist_item(i, &si);
 if (si.length > largest)
 largest = si.length;
}

msg("Largest string is %d characters long.\n", largest);

5.20 Miscellaneous

These are functions that don’t really fit into any particular category. The headers they are defined
in are mentioned in each case.

5.20.1 tag_remove

Definition idaman int ida_export
tag_remove(const char *instr, char *buf, int bufsize)

Synopsis
Remove any colour tags from *instr, and store the result in *buf, limited by
bufsize. Supplying the same pointer for *instr and *buf is also supported,
in which case bufsize is 0. This function is defined in lines.hpp.

Example

#include <ua.hpp> // For ua_ functions
#include <lines.hpp>

// Get the entry point address
ea_t addr = inf.startIP;

// Fill cmd with information about the instruction
// at the entry point
ua_ana0(addr);

// Loop through each operand (until one of o_void type
// is reached), displaying the operand text.
for (int i = 0; cmd.Operands[i].type != o_void; i++) {
 char op[MAXSTR];
 ua_outop(addr, op, sizeof(op)-1, i);

 // Strip the colour tags off
 tag_remove(op, op, 0);
 msg("Operand %d: %s\n", i, op);
}

5.20.2 open_url

Definition inline void
open_url(const char *url)

Synopsis Opens *url in the system default web browser. This function is defined in
kernwin.hpp.

Example
#include <kernwin.hpp>

open_url("http://www.binarypool.com/idapluginwriting/");

5.20.3 call_system

Definition idaman int ida_export
call_system(const char *command)

Synopsis Runs the command, *command, from a system shell. This function is defined in
diskio.hpp.

Example

#include <diskio.hpp>

// Run notepad
call_system("notepad.exe");

5.20.4 idadir

Definition idaman const char *ida_export
idadir(const char *subdir)

Synopsis

Returns the IDA path if *subdir is NULL. If *subdir is not NULL, the IDA
sub-directory path is returned. These are the possible sub-directories, as taken
from diskio.hpp:

#define CFG_SUBDIR "cfg"
#define IDC_SUBDIR "idc"
#define IDS_SUBDIR "ids"
#define IDP_SUBDIR "procs"
#define LDR_SUBDIR "loaders"
#define SIG_SUBDIR "sig"
#define TIL_SUBDIR "til"

This function is defined in diskio.hpp.

Example
#include <diskio.hpp>

msg("IDA directory is %s\n", idadir(NULL));

5.20.5 getdspace

Definition idaman ulonglong ida_export
getdspace(const char *path)

Synopsis Returns the amount of disk space available on the disk hosting *path. This
function can be found in diskio.hpp.

Example

#include <diskio.hpp>

// Get the disk space on the disk with IDA installed on
// it.
if (getdspace(idadir(NULL)) < 100*1024*1024)
 msg("You need at least 100 MB free to run this.");

5.20.6 str2ea

Definition idaman bool ida_export
str2ea(const char *p, ea_t *ea, ea_t screenEA)

Synopsis
Convert the string *p to an address stored in *ea if it exists within the currently
disassembled file(s), return true on success. This function is defined in
kernwin.hpp.

Example

#include <kernwin.hpp>

// Just some random address
char *addr_s = "010100F0";
ea_t addr;

// If 010100F0 is in the binary, print the address
if (str2ea(addr_s, &addr, 0))
 msg("Address: %a\n", addr);

5.20.7 ea2str

Definition idaman char *ida_export
ea2str(ea_t ea, char *buf, int bufsize)

Synopsis

Convert the address, ea, to string, stored in *buf, limited by bufsize. The
format of the string produced is segmentname:address, so for example,
supplying the 0100102A address from the .text segment would produce
.text:0100102A. This function is defined in kernwin.hpp.

Example

#include <kernwin.hpp>

ea_t addr = get_screen_ea();
char addr_s[MAXSTR];

// Convert addr into addr_s
ea2str(addr, addr_s, sizeof(addr_s)-1);
msg("Address: %s\n", addr_s);

5.20.8 get_nice_colored_name

Definition
idaman ssize_t ida_export
get_nice_colored_name(ea_t ea, char *buf, size_t bufsize,
int flags=0);

Synopsis

Get the formatted name of ea, store it in *buf limited by bufsize. If flags is
set to GNCN_NOCOLOR, no colour codes will be included in the name. If ea
doesn't have a name, its address will be returned in a "human readable" form,
like start+56 or .text:01002010 for example. This function is defined in
name.hpp.

Example

#include <kernwin.hpp> // For get_screen_ea() definition
#include <name.hpp>

char buf[MAXSTR];

// Get the nicely formatted name/address of the
// current cursor position. No colour codes will
// be included.
get_nice_colored_name(get_screen_ea(),
 buf,
 sizeof(buf)-1,
 GNCN_NOCOLOR);

msg("Name at cursor position: %s\n", buf);

6 Examples
The below examples have been included to provide a bit of context to the use of the structures
and functions covered in this tutorial. All are extensively commented and will compile as-is, i.e.
not requiring any modification or inclusion of headers, etc. like previous examples did.

The code for each of the below is also available at http://www.binarypool.com/idapluginwriting/.

6.1 Looking for Calls to sprintf, strcpy, and sscanf

The below example will find “low hanging fruit” when auditing a binary. It does this by finding calls
to usually misused functions like sprintf, strcpy and sscanf (feel free to add more of your
choosing). It first finds the address of the extern definitions of these functions, then uses IDA’s
cross referencing functionality to find all the addresses within the binary that reference those
extern definitions.

//
// unsafefunc.cpp
//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>
#include <lines.hpp>
#include <name.hpp>

int IDAP_init(void)
{
 if(inf.filetype != f_ELF && inf.filetype != f_PE) {
 error("Executable format must be PE or ELF, sorry.");
 return PLUGIN_SKIP;
 }

 return PLUGIN_KEEP;
}

void IDAP_term(void)
{
 return;
}

void IDAP_run(int arg)
{
 // The functions we're interested in.
 char *funcs[] = { "sprintf", "strcpy", "sscanf", 0 };

 // Loop through all segments
 for (int i = 0; i < get_segm_qty(); i++) {
 segment_t *seg = getnseg(i);

 // We are only interested in the pseudo segment created by
 // IDA, which is of type SEG_XTRN. This segment holds all
 // function 'extern' definitions.
 if (seg->type == SEG_XTRN) {

http://www.binarypool.com/idapluginwriting/

 // Loop through each of the functions we're interested in.
 for (int i = 0; funcs[i] != 0; i++) {
 // Get the address of the function by its name
 ea_t loc = get_name_ea(seg->startEA, funcs[i]);
 // If the function was found, loop through it's
 // referrers.
 if (loc != BADADDR) {
 msg("Finding callers to %s (%a)\n", funcs[i], loc);
 xrefblk_t xb;
 // Loop through all the TO xrefs to our function.
 for (bool ok = xb.first_to(loc, XREF_DATA);

ok;
ok = xb.next_to()) {

 // Get the instruction (as text) at that address.
 char instr[MAXSTR];
 char instr_clean[MAXSTR];
 generate_disasm_line(xb.from, instr, sizeof(instr)-1);
 // Remove the colour coding and format characters
 tag_remove(instr, instr_clean, sizeof(instr_clean)-1);
 msg("Caller to %s: %a [%s]\n",

funcs[i],
xb.from,
instr_clean);

 }
 }
 }
 }
 }

 return;

}

char IDAP_comment[] = "Insecure Function Finder";
char IDAP_help[] = "Searches for all instances"

" of strcpy(), sprintf() and sscanf().\n";

char IDAP_name[] = "Insecure Function Finder";
char IDAP_hotkey[] = "Alt-I";

plugin_t PLUGIN =
{
 IDP_INTERFACE_VERSION,
 0,
 IDAP_init,
 IDAP_term,
 IDAP_run,
 IDAP_comment,
 IDAP_help,
 IDAP_name,
 IDAP_hotkey
};

6.2 Listing Functions Containing MOVS et al.

When looking for the use of vulnerable functions like strcpy for example, you might need to look
deeper than simple uses of the function and identify functions that use instructions in the movs
family (movsb, movsd, etc.). This plug-in will go through all the functions, then each of their
instructions looking for anything that uses a movs-like mnemonic.

//
// movsfinder.cpp
//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>
#include <allins.hpp>

int IDAP_init(void)
{
 // Only support x86 architecture
 if(strncmp(inf.procName, "metapc", 8) != 0) {
 error("Only x86 binary type supported, sorry.");
 return PLUGIN_SKIP;
 }

 return PLUGIN_KEEP;
}

void IDAP_term(void)
{
 return;
}

void IDAP_run(int arg)
{
 // Instructions we're interested in. NN_movs covers movsd,
 // movsw, etc.
 int movinstrs[] = { NN_movsx, NN_movsd, NN_movs, 0 };

 // Loop through all segments
 for (int s = 0; s < get_segm_qty(); s++) {
 segment_t *seg = getnseg(s);

 // We are only interested in segments containing code.
 if (seg->type == SEG_CODE) {

 // Loop through each function
 for (int x = 0; x < get_func_qty(); x++) {
 func_t *f = getn_func(x);
 char funcName[MAXSTR];

 // Get the function name
 get_func_name(f->startEA, funcName, sizeof(funcName)-1);

 // Loop through the instructions in each function
 for (ea_t addr = f->startEA; addr < f->endEA; addr++) {

 // Get the flags for this address
 flags_t flags = getFlags(addr);

 // Only look at the address if it's a head byte, i.e.
 // the start of an instruction and is code.
 if (isHead(flags) && isCode(flags)) {
 char mnem[MAXSTR];

 // Fill the cmd structure with the disassembly of
 // the current address and get the mnemonic text.
 ua_mnem(addr, mnem, sizeof(mnem)-1);

 // Check the mnemonic of the address against all
 // mnemonics we're interested in.
 for (int i = 0; movinstrs[i] != 0; i++) {
 if (cmd.itype == movinstrs[i])
 msg("%s: found %s at %a!\n", funcName, mnem, addr);
 }
 }
 }
 }
 }
 }

 return;
}

char IDAP_comment[] = "MOVSx Instruction Finder";
char IDAP_help[] =
 "Searches for all MOVS-like instructions.\n"
 "\n"
 "This will display a list of all functions along with\n"
 "the movs instruction used within.";

char IDAP_name[] = "MOVSx Instruction Finder";
char IDAP_hotkey[] = "Alt-M";

plugin_t PLUGIN =
{
 IDP_INTERFACE_VERSION,
 0,
 IDAP_init,
 IDAP_term,
 IDAP_run,
 IDAP_comment,
 IDAP_help,
 IDAP_name,
 IDAP_hotkey
};

6.3 Auto-loading DLLs Into the IDA Database

Most binaries will spread their functionality across multiple files (DLLs), loading them at runtime
using LoadLibrary. In these cases, it can be useful to have IDA auto-load these DLLs into the
one IDB. This plug-in will search through the strings in a binary looking for anything containing
.dll. For strings that do, it is assumed they are DLLs intended to be loaded by the binary and
will prompt the user for the full path of that DLL and load it into the IDB.

//
// loadlib.cpp
//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>
#include <strlist.hpp>

// Maximum number of library files to load into the IDB
#define MAXLIBS 5

int IDAP_init(void)
{
 if (inf.filetype != f_PE) {
 error("Only PE executable file format supported.\n");
 return PLUGIN_SKIP;
 }

 return PLUGIN_KEEP;
}

void IDAP_term(void)
{
 return;
}

void IDAP_run(int arg)
{
 char loadLibs[MAXLIBS][MAXSTR];
 int libno = 0, i;

 // Loop through all strings to find any string that contains
 // .dll. This will eventuall be our list of DLLs to load.
 for (i = 0; i < get_strlist_qty(); i++) {
 char string[MAXSTR];
 string_info_t si;

 // Get the string item
 get_strlist_item(i, &si);

 if (si.length < sizeof(string)) {

 // Retrieve the string from the binary
 get_many_bytes(si.ea, string, si.length);

 // We're only interested in C strings.

 if (si.type == 0) {

 // .. and if the string contains .dll
 if (stristr(string, ".dll") && libno < MAXLIBS) {

 // Add the string to the list of DLLs to load later on.
 strncpy(loadLibs[libno++], string, MAXSTR-1);
 }
 }
 }
 }

 // Now go through the list of libraries found and load them.
 msg("Loading the first %d libraries found...\n", MAXLIBS);

 for (i = 0; i < MAXLIBS; i++) {
 msg("Lib: %s\n", loadLibs[i]);

 // Ask the user for the full path to the DLL (the executable will
 // only have the file name).
 char *file = askfile_cv(0, loadLibs[i], "File path...\n", NULL);

 // Load the DLL using the pe loader module.
 if (load_loader_module(NULL, "pe", file, 0)) {
 msg("Successfully loaded %s\n", loadLibs[i]);
 } else {
 msg("Failed to load %s\n", loadLibs[i]);
 }
 }
}

char IDAP_comment[] = "DLL Auto-Loader";
char IDAP_help[] = "Loads the first 5 DLLs"

" mentioned in a binary file\n";

char IDAP_name[] = "DLL Auto-Loader";
char IDAP_hotkey[] = "Alt-D";

plugin_t PLUGIN =
{
 IDP_INTERFACE_VERSION,
 0,
 IDAP_init,
 IDAP_term,
 IDAP_run,
 IDAP_comment,
 IDAP_help,
 IDAP_name,
 IDAP_hotkey
};

6.4 Bulk Breakpoint Setter & Saver

This single plug-in gives you the ability to save the currently set breakpoints to a file, as well as
load a list of addresses from a file and set breakpoints on them. To keep the plug-in simple, it
expects the format of the input file to be sane, otherwise it will fail. You will also need to modify
your plugins.cfg file to be able to use the one plug-in for both functions (setting and saving),
as shown below.

//
// bulkbpt.cpp
//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>
#include <diskio.hpp>
#include <dbg.hpp>

// Maximum number of breakpoints that can be set
#define MAX_BPT 100

// Insert the following two lines into your plugins.cfg file
// Replace pluginname with the filename of your plugin minus
// the extension
//
// Write_Breakpoints pluginname Alt-D 0
// Read_Breakpoints pluginname Alt-E 1
//

void read_breakpoints() {
 char c, ea[9];
 int x = 0, b = 0;
 ea_t ea_list[MAX_BPT];

 // Ask the user for the file containing the breakpoints
 char *file = askfile_cv(0, "", "Breakpoint list file...", NULL);

 // Open the file in read-only mode
 FILE *fp = fopenRT(file);
 if (fp == NULL) {
 warning("Unable to open breakpoint list file, %s\n", file);
 return;
 }

 // Grab 8-byte chunks from the file
 while ((c = qfgetc(fp)) != EOF && b < MAX_BPT) {
 if (isalnum(c)) {
 ea[x++] = c;
 if (x == 8) {
 // NULL terminate the string
 ea[x] = 0;
 x = 0;

 // Convert the 8 character string to an address

 str2ea(ea, &ea_list[b], 0);
 msg("Adding breakpoint at %a\n", ea_list[b]);
 // Add the breakpoint as a software breakpoint
 add_bpt(ea_list[b], 0, BPT_SOFT);
 b++;
 }
 }
 }

 // Close the file handle
 qfclose(fp);
}

void write_breakpoints() {
 char c, ea[9];
 int x = 0, b = 0;
 ea_t ea_list[MAX_BPT];

 // Ask the user for the file to save the breakpoints to
 char *file = askstr(0, "", "Breakpoint list file...", NULL);

 // Open the file in write-only mode
 FILE *fp = ecreateT(file);

 for (int i = 0; i < get_bpt_qty(); i++) {
 bpt_t bpt;
 char buf[MAXSTR];

 getn_bpt(i, &bpt);

 qsnprintf(buf, sizeof(buf)-1, "%08a\n", bpt.ea);
 ewrite(fp, buf, strlen(buf));
 }

 // Close the file handle
 eclose(fp);
}

void IDAP_run(int arg)
{
 // Depending on the argument supplied,
 // read the breakpoint list from a file and
 // apply it, or write the current breakpoints
 // to a file.
 switch (arg) {
 case 0:
 write_breakpoints();
 break;
 case 1:
 default:
 read_breakpoints();
 break;
 }
}

int IDAP_init(void)
{
 return PLUGIN_KEEP;

}

void IDAP_term(void)
{
 return;
}

// These are irrelevant because they will be overridden by
// plugins.cfg.
char IDAP_comment[] = "Bulk Breakpoint Setter and Recorder";
char IDAP_help[] =
 "Sets breakpoints at a list of addresses in a text file"
 " or saves the current breakpoints to file.\n"
 "The read list must have one address per line.\n";

char IDAP_name[] = "Bulk Breakpoint Setter and Recorder";
char IDAP_hotkey[] = "Alt-B";

plugin_t PLUGIN =
{
 IDP_INTERFACE_VERSION,
 0,
 IDAP_init,
 IDAP_term,
 IDAP_run,
 IDAP_comment,
 IDAP_help,
 IDAP_name,
 IDAP_hotkey
};

6.5 Selective Tracing (Method 1)

This plug-in gives you the ability to turn on instruction tracing only for a specific address range. It
does this by running to the start address, turning on instruction tracing, running to the end
address, and then turning instruction tracing off. Method 2 demonstrates a more flexible
approach, utilising step tracing.

//
// snaptrace.cpp
//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>
#include <dbg.hpp>

int IDAP_init(void)
{
 return PLUGIN_KEEP;
}

void IDAP_term(void)
{
 return;
}

void IDAP_run(int arg)
{
 // Set the default start address to the user cursur position
 ea_t eaddr, saddr = get_screen_ea();

 // Allow the user to specify a start address
 askaddr(&saddr, "Address to start tracing at");

 // Set the end address to the end of the current function
 func_t *func = get_func(saddr);
 eaddr = func->endEA;

 // Allow the user to specify an end address
 askaddr(&eaddr, "Address to end tracing at");

 // Queue the following

 // Run to the start address
 request_run_to(saddr);
 // Then enable tracing
 request_enable_insn_trace();
 // Run to the end address, tracing all stops in between
 request_run_to(eaddr);
 // Turn off tracing once we've hit the end address
 request_disable_insn_trace();
 // Stop the process once we have what we want
 request_exit_process();

 // Run the above queued requests

 run_requests();

}

// These are actually pointless because we'll be overriding them
// in plugins.cfg
char IDAP_comment[] = "Snap Tracer";
char IDAP_help[] = "Allow tracing only between user "
 "specified addresses\n";

char IDAP_name[] = "Snap Tracer";
char IDAP_hotkey[] = "Alt-T";

plugin_t PLUGIN =
{
 IDP_INTERFACE_VERSION,
 0,
 IDAP_init,
 IDAP_term,
 IDAP_run,
 IDAP_comment,
 IDAP_help,
 IDAP_name,
 IDAP_hotkey
};

6.6 Selective Tracing (Method 2)

Utilising step tracing, this plug-in sets up a debug event notification handler to handle a trace
event (one instruction executed). Within this handler, it checks whether EIP is within the user-
defined range, and if is, displays ESP. Obviously there are much more interesting things you can
do with this sort of functionality like alerting based on the contents of registers and/or memory.

//
// snaptrace2.cpp
//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>
#include <dbg.hpp>

ea_t start_ea = 0;
ea_t end_ea = 0;

// Handler for HT_DBG events
int idaapi trace_handler(void *udata, int dbg_event_id, va_list va)
{
 regval_t esp, eip;

 // Get ESP register value
 get_reg_val("esp", &esp);
 // Get EIP register value
 get_reg_val("eip", &eip);

 // We'll also receive debug events unrelated to tracing,
 // make sure those are filtered out
 if (dbg_event_id == dbg_trace) {
 // Make sure EIP is between the user-specified range
 if (eip.ival > start_ea && eip.ival < end_ea)

msg("ESP = %a\n", esp.ival);
 }

 return 0;
}

int IDAP_init(void)
{
 // Receive debug event notifications
 hook_to_notification_point(HT_DBG, trace_handler, NULL);
 return PLUGIN_KEEP;
}

void IDAP_term(void)
{
 // Unhook from the notification point on exit
 unhook_from_notification_point(HT_DBG, trace_handler, NULL);
 return;
}

void IDAP_run(int arg)

{
 // Ask the user for a start and end address
 askaddr(&start_ea, "Start Address:");
 askaddr(&end_ea, "End Address:");

 // Queue the following

 // Run to the binary entry point
 request_run_to(inf.startIP);
 // Enable step tracing
 request_enable_step_trace();

 // Run queued requests
 run_requests();

}

// These are actually pointless because we'll be overriding them
// in plugins.cfg
char IDAP_comment[] = "Snap Tracer 2";
char IDAP_help[] = "Allow tracing only between user "
 "specified addresses\n";

char IDAP_name[] = "Snap Tracer 2";
char IDAP_hotkey[] = "Alt-I";

plugin_t PLUGIN =
{
 IDP_INTERFACE_VERSION,
 0,
 IDAP_init,
 IDAP_term,
 IDAP_run,
 IDAP_comment,
 IDAP_help,
 IDAP_name,
 IDAP_hotkey
};

6.7 Binary Copy & Paste

Seeing there isn’t any binary copy-and-paste functionality in IDA, this plug-in will take care of both
copy and paste operations allowing you to take a chunk of binary from one place and overwrite
another with it. You need to modify your plugins.cfg file as this is a multi-function plug-in, needing
one invocation for copy and another for paste. Obviously it only supports copying and pasting
within IDA, however it could probably be extended to go beyond that.

//
// copypaste.cpp
//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>

#define MAX_COPYPASTE 1024

// This will hold our copied buffer for pasting
char data[MAX_COPYPASTE];

// Bytes copied into the above buffer
ssize_t filled = 0;

// Insert the following two lines into your plugins.cfg file
// Replace pluginname with the filename of your plugin minus
// the extension.
//
// Copy_Buffer pluginname Alt-C 0
// Paste_Buffer pluginname Alt-V 1
//

int IDAP_init(void)
{
 return PLUGIN_KEEP;
}

void IDAP_term(void)
{
 return;
}

void copy_buffer() {
 ea_t saddr, eaddr;
 ssize_t size;

 // Get the boundaries of the user selection
 if (read_selection(&saddr, &eaddr)) {
 // Work out the size, make sure it doesn't exceed the buffer
 // we have allocated.
 size = eaddr - saddr;
 if (size > MAX_COPYPASTE) {
 warning("You can only copy a max of %d bytes\n", MAX_COPYPASTE);

 return;
 }

 // Get the bytes from the file, store it in our buffer
 if (get_many_bytes(saddr, data, size)) {
 filled = size;
 msg("Successfully copied %d bytes from %a into memory.\n",

size,
saddr);

 } else {
 filled = 0;
 }
 } else {
 warning("No bytes selected!\n");
 return;
 }
}

void paste_buffer() {

 // Get the cursor position. This is where we will paste to
 ea_t curpos = get_screen_ea();

 // Make sure the buffer has been filled with a Copy operation first.
 if (filled) {
 // Patch the binary (paste)
 patch_many_bytes(curpos, data, filled);
 msg("Patched %d bytes at %a.\n", filled, curpos);
 } else {
 warning("No data to paste!\n");
 return;
 }
}

void IDAP_run(int arg) {

 // Based on the argument supplied in plugins.cfg,
 // we can use the one plug-in for both the copy
 // and paste operations.
 switch(arg) {
 case 0:
 copy_buffer();
 break;
 case 1:
 paste_buffer();
 break;
 default:
 warning("Invalid usage!\n");
 return;
 }
}

// These are actually pointless because we'll be overriding them
// in plugins.cfg
char IDAP_comment[] = "Binary Copy and Paster";
char IDAP_help[] = "Allows the user to copy and paste binary\n";

char IDAP_name[] = "Binary Copy and Paster";

char IDAP_hotkey[] = "Alt-I";

plugin_t PLUGIN =
{
 IDP_INTERFACE_VERSION,
 0,
 IDAP_init,
 IDAP_term,
 IDAP_run,
 IDAP_comment,
 IDAP_help,
 IDAP_name,
 IDAP_hotkey
};

