
Computing roots in �nite �elds

Arjen Stolk

Leiden, October 13, 2008



� The problem �

Problem 1.

Given an element α ∈ Fq and a positive integer e, �nd β ∈ Fq such

that βe = α.

Problem 2.

Given a �nite cyclic group C of order n, an element a ∈ C and a

positive integer e, �nd b ∈ C such that be = a.



� An example �

Example.

Let n be a positive integer and consider C = Z/nZ. Let a ∈ C and

e ∈ Z>0. In this case our problem comes down to �nding all b such

that

be ≡ amod n.

This can be done quickly using the Euclidean algorithm.



� Basic operations �

Let C be a �nite cyclic group of order n. We assume that there is a

total ordering on the elements of C . Furthermore, we assume that

the following things can be done in polynomial time in log n:

I given a, b ∈ C , computing ab;

I given a ∈ C , computing a−1;

I given a, b ∈ C , deciding if a = b;

I given a, b ∈ C , deciding if a < b;

I picking a uniform random element a ∈ C .



� Computing powers �

A useful building block for algorithms involving elements of C is the

following.

Lemma.

Let a, b ∈ C and e ∈ Z≥0 then the there is an algorithm that

computes abe using O(log e) operations.



� The repeated squaring algorithm �

Algorithm 1.

Input: a, b ∈ C , e ∈ Z≥0
Output: abe

1. x ← a

2. while e > 0:

2.1 if e is odd, then x ← bx

2.2 b ← b2

2.3 e ← be/2c
3. output x

(skip to slide 9)



� Correctness �

Suppose that the algorithm is called with inputs a, b and e. We

claim that at the start of each iteration of 2, we have xbe = abe.

Suppose b is even. Let x ′ = x , b′ = b2 and e ′ = e/2.
Then we have

x ′(b′)e
′
= x(b2)e/2 = xbe = abe.

Suppose b is odd. Let x ′ = bx , b′ = b2 and e ′ = (e − 1)/2.
Then we have

x ′(b′)e
′
= xb(b2)(b−1)/2 = xbe = abe.

After each iteration e has strictly decreased, so the algorithm stops

with e = 0 and hence x = xbe = abe.



� Runtime �

With every iteration, e is halved. Hence step 2 will be repeated at

most
⌈
2log e

⌉
times. Each iteration of step 2 takes at most 2

multiplications in C .

In total, this takes O(log e) operations.



� The coprime case �

Theorem.

Let n and e be coprime positive integers. Let C be a �nite cyclic

group of order n and let a ∈ C . Then there is an e�cient algorithm

to compute the unique b ∈ C such that be = a.

Proof.

Suppose that z is a generator of C . Write a = zs and b = z t . Then

we are looking for t such that z te = zs . That is, we are looking for

solutions of te ≡ s mod n. Using the Euclidean algorithm, compute

p and q such that pe + qn = 1. Then te ≡ s mod n if and only if

t ≡ ps mod n. That is, b = ap is the unique solution.



� Splitting the problem �

Let m and n be coprime integers. Let C be a �nite cyclic group of

order mn. Write Cm and Cn for the unique subgroups of order m

and n respectively.

Let p and q be integers such that mp + nq = 1. Then the inverse

of the natural map Cm × Cn → C is given by

C −→ Cm × Cn

x 7−→ (aqn, apm).



� The pure power case �

Let e and k be positive integers. Let C be a �nite cyclic group of

order ek .

Theorem.

Let z be a generator of C and a ∈ C , then there is an algorithm

that computes m ∈ Z≥0 such that a = zm using O(k2
√
e log e)

operations.



� The case k = 1 �

Let C be a �nite group of order e and z a generator of C .

Lemma.

Let a ∈ C then there is an algorithm that computes a positive

integer m such that a = zm using O(
√
e log e) operations.



� The discrete logarithm algorithm (k=1) �

Algorithm 2.

Input: a, z ∈ C

Output: m such that zm = a

1. f ←
⌈√

e
⌉

2. for i = 0, . . . , f − 1:

put zi ← z−i and Zi = z�

3. for i = 0, . . . , f − 1:

check if there is a j such that azi = Zj

4. output i + fj

(skip to slide 15)



� Analysis �

For the correctness, note that if azi = Zj , we have az−i = z fj , that

is, a = z i+fj .

To look for azi inside {Z0, . . .Zf−1} using only O(log e) operations,
we use the total ordering of elements of C , for example by storing

the Zj in a binary tree.



� The discrete logarithm algorithm �

Algorithm 3.

Input: a, z ∈ C

Output: m such that zm = a

1. m← 0, w ← ze
k−1

, r ← k − 1

2. while a 6= 1:

2.1 b ← aer

2.2 using algorithm 2 on the subgroup generated by w ,

determine s such that w s = b

2.3 a← az−sek−r−1

, m← m + sek−r−1, r ← r − 1

3. output m

(skip to slide 19)



� Example �

Let e = 5, k = 6. Let C be a �nite group of order ek and z a

generator of C . Let a = z4321 = z1142415 .

i r m a b s

1 5 0 z1142415 z1000005 1

2 4 1 z1142405 z4000005 4

3 3 415 z1142005 z2000005 2

4 2 2415 z1140005 z4000005 4

5 1 42415 z1100005 z1000005 1

6 0 142415 z1000005 z1000005 1

7 -1 1142415 z0 - -



� Correctness �

Suppose that the algorithm is called with input a. We claim that at

the start of each iteration of 2, we have ae
r+1

= 1 and azm = a.

Before step 2.3, let a′ = az−sek−r−1

and m′ = m + ser . As b = w s

we have

(a′)e
r
= (az−sek−r−1

)e
r
= bw−s = 1

and

a′zm
′
= (az−sek−r−1

)zm+sek−r−1

= azm = a,

so the same relations hold for the next iteration.

At the start of the (k + 1)-th iteration, we have r = −1 and so

a = ae
r+1

= 1 and the loop stops. At this point we have

zm = azm = a.



� Runtime �

We analyse each step:

1 takes O(k log e) operations;

2 is iterated at most k times:

2.1 takes O(k log e) operations;

2.2 uses algorithm 2 applied to a group of e elements,

this requires O(
√
e log e) operations;

2.3 takes O(k log e) operations.

In total, the algorithm requires O(k2
√
e log e) operations.



� Finding a generator �

Algorithms 2 and 3 require a generator of C to work. Finding these

generators is the only non-deterministic part of the root �nding

algorithm.

Suppose that e is prime and k ∈ Z>0. Let C be a �nite cyclic

group of order ek . Let z ∈ C . Then z is a generator of C if and

only if ze
k−1 6= 1.

A random element has a chance of 1/e of it not being a generator.

Checking if an element is a generator takes O(log e) operations. So

a generator can be found in expected O(log e) operations.



� Putting it all together �

By combining the algorithms we have seen, we �nd a single

algorithm to solve our original problem. This algorithm is due to

Shanks.

Theorem.

Let C be a �nite cyclic group of order n and e be a prime number.

Then there is a probabilistic polynomial time algorithm that given

a ∈ C computes b ∈ C such that be = a or shows that no such b

exists. The algorithm takes an expected O((log n)2
√
e log e) group

operations.



� Shanks' algorithm �

Algorithm 4.

Input: a ∈ C , e prime

Output: b ∈ C such that a = be or FAILURE if no such b exists

1. �nd k ,m, d such that n = ekm and md ≡ −1mod e
2. pick random elements x of C until xn/e 6= 1

3. z ← xm, w ← xn/e , f ←
⌈√

e
⌉

4. for i = 0, . . . , f − 1: put wi ← w−i , Wi ← w�

5. set y ← z , r ← k , c ← amd , b ← a(md+1)/e

6. while c 6= 1:

6.1 �nd the smallest s ≥ 1 such that ces

= 1

if s = r output FAILURE

6.2 �nd i , j such that ces−1

wi = Wj

6.3 set t ← y er−s−1

, y ← te , r ← s, c ← cy−i−fj , b ← bt−i−fj

7. output b



� Analysis �

All elements should be familiar from previous algorithms.

To convince you of the correctness of the algorithm, note that

during every iteration of 6, we have the following:

I y is a generator of the subgroup of er elements;

I c is an element of that subgroup;

I ac = be .

The exponent r is decreasing, so eventually we will have c = 1 and

then a = be .



� A deterministic algorithm? �

As remarked before, the only non-deterministic step of algorithm 4

is �nding the generator of the subgroup of order ek (step 2).

In the case that C = F×p , we expect just trying 1, 2, 3, etc. as

candidates should work fast enough. However, this has only been

proved assuming the Riemann Hypothesis.


