Computing roots in finite fields

Arjen Stolk

Leiden, October 13, 2008



» The problem «

Problem 1.
Given an element a € Fy and a positive integer e, find § € Fg such
that 8¢ = a.

Problem 2.
Given a finite cyclic group C of order n, an element a € C and a
positive integer e, find b € C such that b¢ = a.



» An example «

Example.
Let n be a positive integer and consider C = Z/nZ. Let a € C and
€ € Z~g. In this case our problem comes down to finding all b such
that

be = amod n.

This can be done quickly using the Euclidean algorithm.



» Basic operations «

Let C be a finite cyclic group of order n. We assume that there is a
total ordering on the elements of C. Furthermore, we assume that
the following things can be done in polynomial time in log n:

v

given a, b € C, computing ab;
given a € C, computing a L

given a, b € C, deciding if a = b;
given a, b € C, deciding if a < b;

picking a uniform random element a € C.



» Computing powers «

A useful building block for algorithms involving elements of C is the
following.

Lemma.
Let a,b € C and e € Z>¢ then the there is an algorithm that
computes ab® using O(log e) operations.



» The repeated squaring algorithm «

Algorithm 1.
Input: a,b e C, e € Z>g
Output: ab¢

l. x+< a
2. while e > 0:

2.1 if eis odd, then x «+— bx
22 b b?
23 e« |e/2]

3. output x

(skip to slide 9)



» Correctness «

Suppose that the algorithm is called with inputs a, b and e. We
claim that at the start of each iteration of 2, we have xb¢ = ab®.

Suppose b is even. Let x' = x, b’ = b and €’ = /2.
Then we have

X'(b)¢ = x(b?)*/? = xb® = ab®.

Suppose b is odd. Let x’ = bx, b' = b? and &' = (e — 1)/2.
Then we have

X'(b')¢ = xb(b?)P~1)/2 = xp¢ = abe.

After each iteration e has strictly decreased, so the algorithm stops
with e = 0 and hence x = xb® = ab®.



» Runtime «

With every iteration, e is halved. Hence step 2 will be repeated at
most Plog e] times. Each iteration of step 2 takes at most 2
multiplications in C.

In total, this takes O(log e) operations.



» The coprime case «

Theorem.

Let n and e be coprime positive integers. Let C be a finite cyclic
group of order n and let a € C. Then there is an efficient algorithm
to compute the unique b € C such that b® = a.

Proof.

Suppose that z is a generator of C. Write a = z° and b = z*. Then
we are looking for t such that z'¢ = z°. That is, we are looking for
solutions of te = s mod n. Using the Euclidean algorithm, compute
p and g such that pe + gn = 1. Then te = smod n if and only if
t = psmod n. That is, b = aP is the unique solution.



» Splitting the problem «

Let m and n be coprime integers. Let C be a finite cyclic group of
order mn. Write C, and C, for the unique subgroups of order m
and n respectively.

Let p and g be integers such that mp + ng = 1. Then the inverse
of the natural map C,, x C, — C is given by

C — ChpxGy

x +— (a9" aP™m).



» The pure power case «

Let e and k be positive integers. Let C be a finite cyclic group of
order ek.

Theorem.
Let z be a generator of C and a € C, then there is an algorithm
that computes m € Z>g such that a = z™ using O(k?y/elog ¢)
operations.



» Thecase k =1 «

Let C be a finite group of order e and z a generator of C.

Lemma.
Let a € C then there is an algorithm that computes a positive
integer m such that a = z™ using O(+/elog €) operations.



» The discrete logarithm algorithm (k=1) «

Algorithm 2.
Input: a,z € C
Output: m such that z™ = a
1. f [\/a
2. fori=0,...,f - 1:
put zj <« z"and Z; = 2
3. fori=0,...,f—1:
check if there is a j such that az; = Z;
4. output i + ¥

(skip to slide 15)



» Analysis «

For the correctness, note that if az; = Z;, we have az— ' = zf, that
is, a= 211,

To look for az; inside {Zy,...Zs_1} using only O(log e) operations,
we use the total ordering of elements of C, for example by storing
the Z; in a binary tree.



» The discrete logarithm algorithm «

Algorithm 3.
Input: a,z € C
Output: m such that z™ = a

1. m<0, W<—zek71,r<—k—1
2. while a # 1:
21 b a*

2.2 using algorithm 2 on the subgroup generated by w,

determine s such that w® = b
—r—1

23 g« az—*€ . m— m+ sek—r-1

 r—r—1

3. output m

(skip to slide 19)



» Example «

Let e =5, k = 6. Let C be a finite group of order ek and z a
generator of C. Let a = 74321 = 71142415

i|r m a b s
1 5 0 21142415 21000005 1
2 4 1 21142405 24000005 4
3 3 415 21142005 22000005 2
4 2 2415 21140005 24000005 4
5 1 42415 21100005 21000005 1
6 0 142415 21000005 21000005 1
7| -1 1142415 z0 - -



» Correctness «

Suppose that the algorithm is called with input a. We claim that at
the start of each iteration of 2, we have a¢ =1 and az™ = a.

— epk—r—1
Before step 2.3, let &/ = az—¢ andm =m-+se". As b=w’
we have
r _epk—r—1, ar _

()¢ = (az* ¥ =bw =1
and

/ _epk—r—1 k—r—1

a'z™m = (az™% )z e =azm =a,

so the same relations hold for the next iteration.

At the start of the (k + 1)-th iteration, we have r = —1 and so
a=2a%" =1 and the loop stops. At this point we have

zZMm=azm=a.



» Runtime «

We analyse each step:

1 takes O(k log e) operations;
2 is iterated at most k times:

2.1 takes O(klog €) operations;

2.2 uses algorithm 2 applied to a group of e elements,
this requires O(y/elog e) operations;

2.3 takes O(klog €e) operations.

In total, the algorithm requires O(k?y/elog e) operations.



» Finding a generator «

Algorithms 2 and 3 require a generator of C to work. Finding these
generators is the only non-deterministic part of the root finding
algorithm.

Suppose that e is prime and k € Z~g. Let C be a finite cyclic
group of order e¥. Let z € C. Then z is a generator of C if and
only if z& 7" £ 1.

A random element has a chance of 1/e of it not being a generator.
Checking if an element is a generator takes O(log e) operations. So
a generator can be found in expected O(log e) operations.



» Putting it all together «

By combining the algorithms we have seen, we find a single
algorithm to solve our original problem. This algorithm is due to
Shanks.

Theorem.

Let C be a finite cyclic group of order n and e be a prime number.
Then there is a probabilistic polynomial time algorithm that given
a € C computes b € C such that b = a or shows that no such b
exists. The algorithm takes an expected O((log n)?/elog e) group
operations.



» Shanks’ algorithm «

Algorithm 4.

Input: a € C, e prime

Output: b € C such that a = b€ or FAILURE if no such b exists
1. find k, m, d such that n = e*m and md = —1 mod e

pick random elements x of C until x"/¢ #£ 1
Z— XM w— x"e f — (Ve

fori=0,....f —1: put w; «— w—', W; — wf

sety —z, r—k, c—am b almd+1)/e

while ¢ # 1:

6.1 find the smallest s > 1 such that ¢® =1
if s =r output FAILUISE

6.2 find i,j such that c® w; = W,

6.3 sett—y* "yt res cecy " b b0

7. output b

oo e Wb



» Analysis «

All elements should be familiar from previous algorithms.
To convince you of the correctness of the algorithm, note that
during every iteration of 6, we have the following:

> y is a generator of the subgroup of e elements;

» c is an element of that subgroup;

> ac = b°.

The exponent r is decreasing, so eventually we will have ¢ = 1 and
then a = b®.



» A deterministic algorithm? «

As remarked before, the only non-deterministic step of algorithm 4
is finding the generator of the subgroup of order e (step 2).

In the case that C = F;, we expect just trying 1, 2, 3, etc. as

candidates should work fast enough. However, this has only been
proved assuming the Riemann Hypothesis.



