
Unbalanced Oil and Vinegar Signature Schemes- Extended Version -Aviad KipnisNDS Technologies5 Hamarpe St. Har HotzvimJerusalem - Israele-mail : akipnis@ndsisrael.comJacques Patarin, Louis GoubinBull SmartCards and Terminals68 route de Versailles - BP 4578431 Louveciennes Cedex - Francee-mail : fjacques.patarin,louis.goubing@bull.netAbstractIn [16], J. Patarin designed a new scheme, called \Oil and Vinegar", for computing asymmetricsignatures. It is very simple, can be computed very fast (both in secret and public key) and requiresvery little RAM in smartcard implementations. The idea consists in hiding quadratic equations in nunknowns called \oil" and v = n unknowns called \vinegar" over a �nite �eld K, with linear secretfunctions. This original scheme was broken in [10] by A. Kipnis and A. Shamir. In this paper, westudy some very simple variations of the original scheme where v > n (instead of v = n). Theseschemes are called \Unbalanced Oil and Vinegar" (UOV), since we have more \vinegar" unknownsthan \oil" unknowns. We show that, when v ' n, the attack of [10] can be extended, but whenv � 2n for example, the security of the scheme is still an open problem. Moreover, when v ' n22 , thesecurity of the scheme is exactly equivalent (if we accept a very natural but not proved property) tothe problem of solving a random set of n quadratic equations in n22 unknowns (with no trapdoor).However, we show that (in characteristic 2) when v � n2, �nding a solution is generally easy. Inthis paper, we also present some practical values of the parameters, for which no attacks are known.We also study schemes with public keys of degree three instead of two. We show that no signi�cantadvantages exist at the present to recommend schemes of degree three instead of two. However, weshow that it is very easy to combine the Oil and Vinegar idea and the HFE schemes of [14]. Theresulting scheme, called HFEV, looks at the present also very interesting both from a practical andtheoretical point of view. In UOV, the number of vinegar variables must be > n, but in HFEV thisnumber can be very small or very large. Then length of a UOV signature can be as short as 192 bitsand for HFEV it can be as short as 80 bits.Note: This paper is the extended version of the paper with the same title published at EURO-CRYPT'99.1 IntroductionSince 1985, various authors (see [7], [9], [12], [14], [16], [17], [18], [21] for example) have suggested somepublic key schemes where the public key is given as a set of multivariate quadratic (or higher degree)equations over a small �nite �eld K.The general problem of solving such a set of equations is NP-hard (cf [8]) (even in the quadratic case).Moreover, when the number of unknowns is, say, n � 16, the best known algorithms are often notsigni�cantly better than exhaustive search (when n is very small, Gr�obner bases algorithms might bee�cient, cf [6]).The schemes are often very e�cient in terms of speed or RAM required in a smartcard implementation.(However, the length of the public key is generally � 1 Kbyte. Nevertheless it is sometimes useful1



to notice that secret key computations can be performed without the public key). The most seriousproblem is that, in order to introduce a trapdoor (to allow the computation of signatures or to allowthe decryption of messages when a secret is known), the generated set of public equations generallybecomes a small subset of all the possible equations and, in many cases, the algorithms have beenbroken. For example [7] was broken by their authors, and [12], [16], [21] were broken. However, manyschemes are still not broken (for example [14], [17], [18], [20]), and also in many cases, some very simplevariations have been suggested in order to repair the schemes. Therefore, at the present, we do notknow whether this idea of designing public key algorithms with multivariate polynomials over small�nite �elds is a very powerful idea (where only some too simple schemes are insecure) or not.In this paper, we will present two new schemes: UOV and HFEV. UOV is a very simple scheme: theoriginal Oil and Vinegar signature scheme (of [16]) was broken (see [10]), but if we have signi�cantlymore \vinegar" unknowns than \oil" unknowns (a de�nition of the \oil" and \vinegar" unknowns canbe found in section 2), then the attack of [10] does not work and the security of this more generalscheme (called UOV) is still an open problem.Moreover, we show that, when we have approximately n22 vinegar unknowns for n oil unknowns, thesecurity of UOV is exactly equivalent (if we accept a natural but not proved property) to the problem ofsolving a random set of n quadratic equations in n22 unknowns (with no trapdoor). This result suggeststhat some partial proof of security (related to some simple to describe and supposed very di�cult tosolve problems) might be found for some schemes with multivariate polynomials over a �nite �eld.However, we show that most of the systems of n quadratic equations in n2 (or more) variables can besolved in polynomial complexity... As a result, at the present, we rather recommend v ' 3n for examplethan v ' n22 for security in UOV. We also study Oil and Vinegar schemes of degree three (instead oftwo). HFEV combines the ideas of HFE (of [14]) and of vinegar variables. HFEV looks more e�cientthan the original HFE scheme.2 The (Original and Unbalanced) Oil and Vinegar of degree twoLet K = Fq be a small �nite �eld (for example K = F2). Let n and v be two integers. The messageto be signed (or its hash) is represented as an element of Kn, denoted by y = (y1; :::; yn). Typically,qn ' 2128. The signature x is represented as an element of Kn+v denoted by x = (x1; :::; xn+v).Secret keyThe secret key is made of two parts:1. A bijective and a�ne function s : Kn+v ! Kn+v . By \a�ne", we mean that each component ofthe output can be written as a polynomial of degree one in the n+ v input unknowns, and withcoe�cients in K.2. A set (S) of n equations of the following type:8i; 1 � i � n; yi =X
ijkaja0k +X�ijka0ja0k +X �ijaj +X �0ija0j + �i (S):The coe�cients 
ijk, �ijk, �ij , �0ij and �i are the secret coe�cients of these n equations. Thevalues a1, ..., an (the \oil" unknowns) and a01, ..., a0v (the \vinegar" unknowns) lie in K. Notethat these equations (S) contain no terms in aiaj .Public keyLet A be the element of Kn+v de�ned by A = (a1; :::; an; a01; :::; a0v). A is transformed into x = s�1(A),where s is the secret, bijective and a�ne function from Kn+v to Kn+v .Each value yi, 1 � i � n, can be written as a polynomial Pi of total degree two in the xj unknowns,1 � j � n + v. We denote by (P) the set of these n equations:8i; 1 � i � n; yi = Pi(x1; :::; xn+v) (P):These n quadratic equations (P) (in the n+ v unknowns xj) are the public key.2



Computation of a signature (with the secret key)The computation of a signature x of y is performed as follows:Step 1: We �nd n unknowns a1, ..., an of K and v unknowns a01, ..., a0v of K such that the n equations(S) are satis�ed.This can be done as follows: we randomly choose the v vinegar unknowns a0i, and then we computethe ai unknowns from (S) by Gaussian reductions (because { since there are no aiaj terms { the(S) equations are a�ne in the ai unknowns when the a0i are �xed).Remark: If we �nd no solution, then we simply try again with new random vinegar unknowns.After very few tries, the probability of obtaining at least one solution is very high, becausethe probability for a n � n matrix over Fq to be invertible is not negligible. (It is exactly(1 � 1q )(1 � 1q2 ):::(1 � 1qn�1 ). For q = 2, this gives approximately 30 %, and for q > 2, thisprobability is even larger.)Step 2: We compute x = s�1(A), where A = (a1; ::; an; a01; :::; a0v). x is a signature of y.Public veri�cation of a signatureA signature x of y is valid if and only if all the (P) are satis�ed. As a result, no secret is needed tocheck whether a signature is valid: this is an asymmetric signature scheme.Note: The name \Oil and Vinegar" comes from the fact that { in the equations (S) { the \oilunknowns" ai and the \vinegar unknowns" a0j are not all mixed together: there are no aiaj products.However, in (P), this property is hidden by the \mixing" of the unknowns by the s transformation. Isthis property \hidden enough" ? In fact, this question exactly means: \is the scheme secure ?". Whenv = n, we call the scheme \Original Oil and Vinegar", since this case was �rst presented in [16]. Thiscase was broken in [10]. It is very easy to see that the cryptanalysis of [10] also works, exactly in thesame way, when v < n. However, the cases v > n are, as we will see, much more di�cult. When v > n,we call the scheme \Unbalanced Oil and Vinegar".3 A short description of the attack of [10]: cryptanalysis of the casev = nThe idea of the attack of [10] is essentially the following:In order to separate the oil variables and the vinegar variables, we look at the quadratic forms of then public equations of (P), we omit for a while the linear terms. Let Gi for 1 � i � n be the respectivematrix of the quadratic form of Pi of the public equations (P).The quadratic part of the equations in the set (S) is represented as a quadratic form with a corre-sponding 2n� 2n matrix of the form :  0 AB C !, the upper left n � n zero submatrix is due to thefact that an oil variable is not multiplied by an oil variable.After hiding the internal variables with the linear function s, we get a representation for the matricesGi = S  0 AiBi Ci !St, where S is an invertible 2n � 2n matrix.De�nition 3.1: We de�ne the oil subspace to be the linear subspace of all vectors in K2n whosesecond half contains only zeros.De�nition 3.2: We de�ne the vinegar subspace as the linear subspace of all vectors in K2n whose�rst half contains only zeros.Lemma 1 Let E and F be a 2n�2n matrices with an upper left zero n�n submatrix. If F is invertiblethen the oil subspace is an invariant subspace of EF�1.3



Proof: E and F map the oil subspace into the vinegar subspace. If F is invertible, then this mappingbetween the oil subspace and the vinegar subspace is one to one and onto (here we use the assumptionthat v = n). Therefore F�1 maps back the vinegar subspace into the oil subspace this argumentexplains why the oil subspace is transformed into itself by EF�1.De�nition 3.4: For an invertible matrix Gj , de�ne Gij = GiG�1j .De�nition 3.5: Let O be the image of the oil subspace by S�1.In order to �nd the oil subspace, we use the following theorem:Theorem 3.1 O is a common invariant subspace of all the matrices Gij.Proof:GiG�1j = S  0 AiBi Ci !St(St)�1  0 AjBj Cj !�1 S�1 = S  0 AiBi Ci ! 0 AjBj Cj !�1 S�1The two inner matrices have the form of E and F in lemma 1. Therefore, the oil subspace is an invariantsubspace of the inner term and O is an invariant subspace of GiG�1j .The problem of �nding common invariant subspace of set of matrices is studied in [10]. Applying thealgorithms in [10] gives us O. We then pick V to be an arbitrary subspace of dimension n such thatV +O = K2n, and they give an equivalent oil and vinegar separation.Once we have such a separation, we bring back the linear terms that were omitted, we pick randomvalues for the vinegar variables and left with a set of n linear equations with n oil variables.Note: Lemma 1 is not true any more when v > n. The oil subspace is still mapped by E and F intothe vinegar subspace. However F�1 does not necessary maps the image by E of the oil subspace backinto the oil subspace and this is why the cryptanalysis of the original oil and vinegar is not valid forthe unbalanced case.This corresponds to the fact that, if the submatrix of zeros in the top left corner of F is smaller thann�n, then F�1 does not have (in general) a submatrix of zeros in the bottom right corner. For example:0B@ 0 3 11 2 22 1 2 1CA�1 = 13 0B@ 2 �5 42 �2 1�3 6 �3 1CA :However, when v � n is small, we see in the next section how to extend the attack.4 Cryptanalysis when v > n and v ' nIn this section, we discuss the case of Oil and Vinegar schemes where v > n, although a direct applicationof the attack described in [10] and in the previous section does not solve the problem, a modi�cation ofthe attack exists, that is applicable as long as v � n is small (more precisely the expected complexityof the attack is approximately q(v�n)�1 � n4).De�nition 4.1: We de�ne in this section the oil subspace to be the linear subspace of all vectors inKn+v whose last v coordinates are only zeros.De�nition 4.2: We de�ne in this section the vinegar subspace to be the linear subspace of all vectorsin Kn+v whose �rst n coordinates are only zeros.Here in this section, we start with the homogeneous quadratic terms of the equations: we omit thelinear terms for a while. 4



The matrices Gi have the representationGi = S  0 AiBi Ci !Stwhere the upper left matrix is the n � n zero matrix, Ai is a n� v matrix, Bi is a v � n matrix, Ci isa v � v matrix and S is a (n+ v)� (n+ v) invertible linear matrix.De�nition 4.3: De�ne Ei to be  0 AiBi Ci !.Lemma 2 For any matrix E that has the form  0 AB C !, the following holds:a) E transforms the oil subspace into the vinegar subspace.b) If the matrix E�1 exists, then the image of the vinegar subspace by E�1 is a subspace of dimensionv which contains the n-dimensional oil subspace in it.Proof: a) follows directly from the de�nition of the oil and vinegar subspaces. When a) is giventhen b) is immediate.The algorithm we propose is a probabilistic algorithm. It looks for an invariant subspace of the oilsubspace after it is transformed by S. The probability for the algorithm to succeed on the �rst try issmall. Therefore we need to repeat it with di�erent inputs. We use the following property: any linearcombination of the matrices E1, ..., En is also of the form  0 AB C !.The following theorem explains why an invariant subspace may exist with a certain probability.Theorem 4.1 Let F be an invertible linear combination of the matrices E1, ..., En. Then for any ksuch that E�1k exists, the matrix FE�1k has a non trivial invariant subspace which is also a subspace ofthe oil subspace, with probability not less than q�1q2d�1 for d = v � n.Proof: The matrix F maps the oil subspace into the vinegar subspace, the image by F of the oilsubspace is mapped by E�1k into a subspace of dimension v that contains the oil subspace { these aredue to lemma 1. We write v = n + d, where d is a small integer. The oil subspace and its image byFE�1k are two subspaces with dimension n that reside in a subspace of dimension n + d. Therefore,their intersection is a subspace of the oil subspace with dimension not less than n� d. We denote theoil subspace by I0 and the intersection subspace by I1. Now, we take the inverse images by FE�1k ofI1: this is a subspace of I0 (the oil subspace) with dimension not less than n � d and the intersectionbetween this subspace and I1 is a subspace of I1 with dimension not less than n � 2d. We call thissubspace I2. We can continue this process and de�ne I` to be the intersection of I`�1 and its inverseimage by FEk�1. These two subspaces have co-dimension not more than d in I`�2. Therefore, I` hasa co-dimension not more than 2d in I`�2 or a co-dimension not more than d in I`�1. We can carry onthis process as long as we are sure that the inverse image by FE�1k of I` has a non trivial intersectionwith I`. This is ensured as long as the dimension of I` is greater than d, but when the dimension is dor less than d, there is no guaranty that these two subspaces { that reside in I`�1 { have a non trivialintersection. We end the process with I` that has dimension � d that resides in I`�1 with dimensionnot more than 2d.We know that the transformation (EG�1k )�1 maps I` into I`�1. With probability not less than q�1q2d�1 ,there is a non zero vector in I` that is mapped to a non zero mutiple of itself { and therefore there is anon trivial subspace of FEk�1 which is also a subspace of the oil subspace.5



Note: It is possible to get a better result for the expected number of eigenvectors and with muchless e�ort: I1 is a subspace with dimension not less than n�d and is mapped by FE�1k into a subspacewith dimension n. The probability for a non zero vector to be mapped to a non zero multiple of itselfis q�1qn�1 . To get the expected value, we multiply it by the number of non zero vectors in I1. It givesa value which is not less than (q�1)(qn�d�1)qn�1 . Since every eigenvector is counted q � 1 times, then theexpected number of invariant subspcaes of dimension 1 is not less than qn�d�1qn�1 � q�d.We de�ne O as in section 3 and we get the following result for O:Theorem 4.2 Let F be an invertible linear combination of the matrices G1; ..., Gn. Then for any ksuch that G�1k exists, the matrix FG�1k has a non trivial invariant subspace, which is also a subspaceof O with probability not less than q�1q2d�1 for d = v � n.Proof: FG�1k = (�1G1 + :::+ �nGn)G�1k= S(�1E1 + :::+ �nEn)St(St)�1E�1k S�1 = S(�1E1 + :::+ �nEn)E�1k S�1:The inner term is an invariant subspace of the oil subspace with the required probability. Therefore,the same will hold for FG�1k , but instead of a subspace of the oil subspace, we get a subspace of O.How to �nd O ?We take a random linear combination of G1, ..., Gn and multiply it by an inverse of one of the Gkmatrices. Then we calculate all the minimal invariant subspaces of this matrix (a minimal invariantsubspace of a matrix A contains no non trivial invariant subspaces of the matrix A { these subspacescorresponds to irreducible factors of the characteristic polynomial of A). This can be done in proba-bilistic polynomial time using standard linear algebra techniques. This matrix may have an invariantsubspace wich is a subspace of O.The following lemma enables us to distinguish between subspaces that are contained in O and randomsubspaces.Lemma 3 If H is a linear subspace and H � O, then for every x, y in H and every i, Gi(x; y) = 0(here we regard Gi as a bilinear form).Proof: There are x0 and y0 in the oil subspace such that x0 = xS�1 and y0 = yS�1.Gi(x; y) = xS  0 AiBi Ci !Styt = (x0S�1)S  0 AiBi Ci ! ((y0S�1)S)t = x0 0 AiBi Ci ! (y0)t = 0:The last term is zero because x0 and y0 are in the oil subspace.This lemma gives a polynomial test to distinguish between subspaces of O and random subspaces.If the matrix we used has no minimal subspace which is also a subspace of O, then we pick anotherlinear combination of G1, ..., Gn, multiply it by an inverse of one of the Gk matrices and try again.After repeating this process approximately qd�1 times, we �nd with good probability at least one zerovector of O. We continue the process until we get n independent vectors of O. These vectors span O.The expected complexity of the process is proportional to qd�1 �n4. We use here the expected numberof tries until we �nd a non trivial invariant subspace and the term n4 covers the computational linearalgebra operations we need to perform for evey try.5 The cases v ' n22 (or v � n22 )PropertyLet (A) be a random set of n quadratic equations in (n+ v) variables x1, ..., xn+v . (By \random" wemean that the coe�cients of these equations are uniformly and randomly chosen). When v ' n22 (andmore generally when v � n22 ), there is probably { for most of such (A) { a linear change of variables(x1; :::; xn+v) 7! (x01; :::; x0n+v) such that the set (A0) of (A) equations written in (x01; :::; x0n+v) is an \Oiland Vinegar" system (i.e. there are no terms in x0i � x0j with i � n and j � n).6



An argument to justify the propertyLet 8><>: x1 = �1;1x01 + �1;2x02 + :::+ �1;n+vx0n+v...xn+v = �n+v;1x01 + �n+v;2x02 + :::+ �n+v;n+vx0n+vBy writing that the coe�cient in all the n equations of (A) of all the x0i � x0j (i � n and j � n) is zero,we obtain a system of n � n � n+12 quadratic equations in the (n + v) � n variables �i;j (1 � i � n + v,1 � j � n). Therefore, when v � approximately n22 , we may expect to have a solution for this systemof equations for most of (A).Remarks:1. This argument is very natural, but this is not a complete mathematical proof.2. The system may have a solution, but �nding the solution might be a di�cult problem. This iswhy an Unbalanced Oil and Vinegar scheme might be secure (for well chosen parameters): thereis always a linear change of variables that makes the problem easy to solve, but �nding such achange of variables might be di�cult.3. In section 7, we will see that, despite the result of this section, it is not recommended to choosev � n2.6 Solving a set of n quadratic equations in k unknowns, k > n, isNP-hardWe present in section 7 an algorithm that solves in polynomial complexity more than 99% of the setsof n quadratic equations in n2 (or more) variables (i.e. it will probably succeed in more than 99% ofthe cases when the coe�cients are randomly chosen).Roughly speaking, we can summarize this result by saying that solving a \random" set of n quadraticequations in n2 (or more) variables is feasible in polynomial complexity (and thus is not NP-hard ifP 6= NP ). However, we see in the present section that the problem of solving any (i.e. 100%) set of nquadratic equations in k � n variables (so for example in k = n2 variables) is NP-hard !To see this, let us assume that we have a black box that takes any set of n quadratic equations with kvariables in input, and that gives one solution when at least one solution exists. Then we can use thisblack box to �nd a solution for any set of n quadratic equations in n variables (and this is NP-hard).We proceed (for example) as follows. Let (A) be a set of (n � 1) quadratic equations with (n � 1)variables x1, x2, ..., xn�1. Then let y1, ..., y� be � more variables.Let (B) be the set of (A) equations plus one quadratic equation in y1, ..., y� (for example the equation:(y1 + :::+ y�)2 = 1). Then (B) is a set of exactly n quadratic equations in (n + 1 + �) variables. It isclear that from the solution of (B) we will immediately �nd one solution for (A).Note 1: (B) has a very special shape ! This is why there is a polynomial algorithm for 99% of theequations without contradicting the fact that solving these sets (B) of equations is a NP-hard problem.Note 2: For (B), we can also add more than one quadratic equations in the yi variables and we canlinearly mix these equations with the equations of (A). In this case, (B) is still of very special formbut this very special form is less obvious at �rst glance since all the variables xi and yj are in all theequations of (B).7 A generally e�cient algorithm for solving a random set of n qua-dratic equations in n2 (or more) unknownsIn this section, we describe an algorithm that solves a system of n randomly chosen quadratic equationsin n+ v variables, when v � n2. 7



Let (S) be the following system:(S) 8>>>><>>>>: P1�i�j�n+v aij1xixj + P1�i�n+v bi1xi + �1 = 0...P1�i�j�n+v aijnxixj + P1�i�n+v binxi + �n = 0The main idea of the algorithm consists in using a change of variables such as:8><>: x1 = �1;1y1 + �2;1y2 + :::+ �n;1yn + �n+1;1yn+1 + :::+ �n+v;1yn+v...xn+v = �1;n+vy1 + �2;n+vy2 + :::+ �n;n+vyn + �n+1;n+vyn+1 + :::+ �n+v;n+vyn+vwhose �i;j coe�cients (for 1 � i � n, 1 � j � n+ v) are found step by step, in order that the resultingsystem (S0) (written with respect to these new variables y1, ..., yn+v) is easy to solve.� We begin by choosing randomly �1;1, ..., �1;n+v .� We then compute �2;1, ..., �2;n+v such that (S 0) contains no y1y2 terms. This condition leads toa system of n linear equations on the (n+ v) unknowns �2;j (1 � j � n + v):X1�i�j�n+v aijk�1;i�2;j = 0 (1 � k � n):� We then compute �3;1, ..., �3;n+v such that (S 0) contains neither y1y3 terms, nor y2y3 terms. Thiscondition is equivalent to the following system of 2n linear equations on the (n + v) unknowns�3;j (1 � j � n+ v): 8><>: P1�i�j�n+v aijk�1;i�3;j = 0 (1 � k � n)P1�i�j�n+v aijk�2;i�3;j = 0 (1 � k � n)� . . .� Finally, we compute �n;1, ..., �n;n+v such that (S 0) contains neither y1yn terms, nor y2yn terms,..., nor yn�1yn terms. This condition gives the following system of (n � 1)n linear equations onthe (n+ v) unknowns �n;j (1 � j � n+ v):8>>>><>>>>: P1�i�j�n+v aijk�1;i�n;j = 0 (1 � k � n)...P1�i�j�n+v aijk�n�1;i�n;j = 0 (1 � k � n)In general, all these linear equations provide at least one solution (found by Gaussian reductions). Inparticular, the last system of n(n � 1) equations and (n + v) unknowns generally gives a solution, assoon as n+ v > n(n� 1), i.e. v > n(n � 2), which is true by hypothesis.Moreover, the n vectors 0B@ �1;1...�1;n+v 1CA, ..., 0B@ �n;1...�n;n+v 1CA are very likely to be linearly independent for arandom quadratic system (S).The remaining �i;j constants (i.e. those with n + 1 � i � n + v and 1 � j � n + 1) are randomlychosen, so as to obtain a bijective change of variables.By rewriting the system (S) with respect to these new variables yi, we are led to the following system:(S0) 8>>>>><>>>>>: nPi=1�i;1y2i + y1L1;1(yn+1; :::; yn+v) + :::+ ynLn;1(yn+1; :::; yn+v) +Q1(yn+1; :::; yn+v) = 0...nPi=1�i;ny2i + y1L1;n(yn+1; :::; yn+v) + :::+ ynLn;n(yn+1; :::; yn+v) +Qn(yn+1; :::; yn+v) = 08



where each Li;j is an a�ne function and each Qi is a quadratic function.We then compute yn+1, ..., yn+v such that:8i; 1 � i � n; 8j; 1 � j � n + v; Li;j(yn+1; :::; yn+v) = 0:This is possible because we have to solve a linear system of n2 equations and v unknowns, whichgenerally provides at least one solution, as long as v � n2. We pick one of these solutions.It remains to solve the following system of n equations on the n unknowns y1, ..., yn:(S 00) 8>>>>><>>>>>: nPi=1 �i1y2i = �1...nPi=1 �iny2i = �nwhere �k = �Qk(yn+1; :::; yn+v) (1 � k � n).In general, this gives the y2i by Gaussian reduction.Then, in characteristic 2, since x 7! x2 is a bijection, we will then �nd a solution for the yi from thisexpression of the y2i .Note: In characteristic 6= 2, this algorithm will also succeed when 2n is not too large (i.e. whenn � 40 for example). (However, when 2n � 264 and when the characteristic is 6= 2, this algorithmrequires too many computations.)8 A variation with twice smaller signaturesIn the UOV described in section 2, the public key is a set of n quadratic equations yi = Pi (x1, :::,xn+v), for 1 � i � n, where y = (y1; :::; yn) is the hash value of the message to be signed. If we usea collision-free hash function, the hash value must at least be 128 bits long. Therefore, qn must be atleast 2128, so that the typical length of the signature, if v = 2n, is at least 3� 128 = 384 bits.As we see now, it is possible to make a small variation in the signature design in order to obtain twicesmaller signatures. The idea is to keep the same polynomial Pi (with the same associated secret key),but now the public equations that we check are:8i; Pi(x1; :::; xn+v) + Li(y1; :::; yn; x1; :::; xn+v) = 0;where Li is a linear function in (x1; :::; xn+v) and where the coe�cients of Li are generated by a hashfunction in (y1; :::; yn).For example Li(y1; :::; yn; x1; :::; xn+v) = �1x1+ �2x2+ :::+ �n+vxn+v , where (�1; �2; :::; �n+v) = Hash(y1, :::, ynjji). Now, n can be chosen such that qn � 264 (instead qn � 2128). (Note: qn must be � 264in order to avoid exhaustive search on a solution x). If v = 2n and qn ' 264, the length of the signaturewill be 3� 64 = 192 bits.9 Oil and Vinegar of degree three9.1 The schemeThe quadratic Oil and Vinegar schemes described in section 2 can easily be extended to any higherdegree. We now present the schemes in degree three.VariablesLet K be a small �nite �eld (for example K = F2). Let a1, ..., an be n elements of K, called the\oil" unknowns. Let a01, ..., a0v be v elements of K, called the \vinegar" unknowns.9



Secret key.The secret key is made of two parts:1. A bijective and a�ne function s : Kn+v ! Kn+v .2. A set (S) of n equations of the following type: for all i � n,yi =X
ijk`aja0ka0̀ +X�ijk`a0ja0ka0̀+X�ijkaja0k+X �ijka0ja0k+X �ijaj+X �0ija0j+�i (S):The coe�cients 
ijk, �ijk`, �ijk, �ijk , �ij , �0ij and �i are the secret coe�cients of these n equations.Note that these equations (S) contain no terms in ajaka` or in ajak : the equations are a�ne inthe aj unknowns when the a0k unknowns are �xed.Public keyLet A be the element ofKn+v de�ned by A = (a1; :::; an; a01; :::; a0v). A is transformed into x = s�1(A),where s is the secret, bijective and a�ne function from Kn+v to Kn+v . Each value yi, 1 � i � n, canbe written as a polynomial Pi of total degree three in the xj unknowns, 1 � j � n+ v. We denote by(P) the set of the following n equations:8i; 1 � i � n; yi = Pi(x1; :::; xn+v) (P):These n equations (P) are the public key.Computation of a signatureLet y be the message to be signed (or its hash value).Step 1: We randomly choose the v vinegar unknowns a0i, and then we compute the ai unknowns from (S)by Gaussian reductions (because { since there are no aiaj terms { the (S) equations are a�ne inthe ai unknowns when the a0i are �xed. (If we �nd no solution for this a�ne system of n equationsand n \oil" unknowns, we just try again with new random \vinegar" unknowns.)Step 2: We compute x = s�1(A), where A = (a1; :::; an; a01; :::; a0v). x is a signature of y.Public veri�cation of a signatureA signature x of y is valid if and only if all the (P) are satis�ed.9.2 First cryptanalysis of Oil and Vinegar of degree three when v � nWe can look at the quadratic part of the public key and attack it exactly as for an Oil and Vinegar ofdegree two. This is expected to work when v � n.Note: If there is no quadratic part (i.e. is the public key is homogeneous of degree three), or if thisattack does not work, then it is always possible to apply a random a�ne change of variables and to tryagain. Moreover, we will see in section 9.3 that, surprisingly, there is an even easier and more e�cientattack in degree three than in degree two !9.3 Cryptanalysis of Oil and Vinegar of degree three when v � (1 +p3)n and K isof characteristic 6= 2 (from an idea of [4])The key idea is to detect a \linearity" in some directions. We search the set V of the values d =(d1; :::; dn+v) such that:8x; 8i; 1 � i � n; Pi(x+ d) + Pi(x� d) = 2Pi(x) (#):By writing that each xk indeterminate has a zero coe�cient, we obtain n � (n+ v) quadratic equationsin the (n+ v) unknowns dj .(Each monomial xixjxk gives (xj + dj)(xk + dk)(x` + d`) + (xj � dj)(xk � dk)(x` � d`)� 2xjxkx`, i.e.2(xjdkd` + xkdjd` + x`djdk).) 10



Furthermore, the cryptanalyst can specify about n � 1 of the coordinates dk of d, since the vectorialspace of the correct d is of dimension n. It remains thus to solve n �(n+v) quadratic equations in (v+1)unknowns dj . When v is not too large (typically when (v+1)22 � n(n + v), i.e. when v � (1 +p3)n),this is expected to be easy.As a result when v � approximately (1 + p3)n and jKj is odd, this gives a simple way to break thescheme.Note 1: When v is sensibly greater than (1 +p3)n (this is a more unbalanced limit than what wehad in the quadratic case), we do not know at the present how to break the scheme.Note 2: Strangely enough, this cryptanalysis of degre three Oil and Vinegar schemes does not workon degree two Oil and Vinegar schemes. The reason is that { in degree two {writing8x; 8i; 1 � i � n; Pi(x+ d) + Pi(x� d) = 2Pi(x)only gives n equations of degree two on the (n+ v) dj unknowns (that we do not know how to solve).(Each monomial xjxk gives (xj + dj)(xk + dk) + (xj � dj)(xk � dk)� 2xjxk, i.e. 2djdk.)Note 3: In degree two, we have seen that Unbalanced Oil and Vinegar public keys are expectedto cover almost all the set of n quadratic equations when v ' n22 . In degree three, we have a similarproperty: the public keys are expected to cover almost all the set of n cubic equations when v ' n36(the proof is similar).10 Public key lengthIf we choose K = F2 then the public key is often large. So it is often more practical to choose a largerK and a smaller n: then the length of the public key can be reduced a lot (see the examples in section14). However, even when K and n are �xed, it is always feasible to make some easy transformationson a public key in order to obtain the public key in a canonical way such that this canonical expressionis slightly shorter than the original expression.� First, it is always possible to publish only the homogeneous part of the quadratic equations(and not the linear part), because if we know the secret a�ne change of variables in an Oil andVinegar scheme with a public key P , then we can solve P (x) + L(x) = y, where L is any linearexpression with exactly the same a�ne change of variables. It is thus possible to publish only thehomogeneous part of P and to choose a convention for computing the linear part L of the publickey (instead of publishing L). For example, this convention can be that the linear terms of L inthe equation number i (1 � i � n) are computed from Hash(ijjId) (or from Hash(ijjP )), whereHash is a public hash function and where Id is the identity of the owner of the secret key.Remark: It is also possible to decide that the linear part is always zero. However, from atheoretical point of view, this may be less secure because we cannot exlude the possibility thatsome e�cient attacks exist against the homogeneous Oil and Vinegar without �nding the secretkey (and without breaking the non-homogeneous case).� On the equations, it is also possible to:1. Make linear and bijective changes of variable x0 = A(x).2. Compute a linear and bijective transformation on the equation: P 0 = t(P). (For example,the new �rst equation can be the old �rst plus the old third equation, etc).By combining easily these two transformations, it is always possible to decrease slightly the lenghtof the public key. 11



Idea 1: It is possible to make a change of variables such that the �rst equation is in a canonicalform (see [11], chapter 6). With this presentation of the public key, the length of the public key willbe approximately n�1n times the initial length.Idea 2: Another idea is to use the idea of section 7, i.e. to create a square of � � � zeros in thecoe�cients, where � ' pn+ v. With this presentation, the lenght of the public key is approximately(n+v)2�(n+v)(n+v)2 times the initial length.Remark: As we will see in section 13, the most e�cient way of reducing the length of the publickey is to choose carefully the values q and n.11 Another variation of the schemes: Unbalanced Oil, Vinegar andSaltThe schemeLet (A) be a set of n quadratic \Oil and Vinegar" equations, as described above, with n oil variablesand v vinegar variables. We denote by (q1; :::; qn) these equations. Let (A0) be a set of r truly trandomquadratic equations in all the variables (i.e. we can have terms in aiaj where ai and aj are oil variablesin (A0) but not in (A)). We denote by (q01; :::; q0n) these equations. We will call these r equations the\salt" equations.Let t be a secret a�ne permutation of Kn+r ! Kn+r . Let (P) be the set of the equations t(q1, :::,qn, q01, :::, q0r). We denote by P1, ..., Pn+r these equations of (P). (P) will be the public key (i.e. wehave \mixed" Oil and Vinegar quadratic equations and truly random quadratic equations with a secreta�ne permutation (P).Let y 2 Kn+r be the hash of a messageM to be signed (or y =Hash(M jj0010jjR)) where R is a randomvalue with no 0010 in base 2). Let x 2 Kn+v . Then x is a valid signature of y if P (x) = y (i.e. if 8i,1 � i � n+ r, Pi(x) = yi).When the secret a�ne functions s and t are known, it is feasible to compute a valid signature afterapproximately O(qr) computations because we will easily compute a solution for the n equations (A)as before, and the probability that this solution also satis�es the r equations (A0) is 1qr (we will tryagain with another random R until we succeed). When qr is small (for example if q � 256 and r � 2),this is clearly feasible. (The name \salt" comes from the fact that we cannot put a lot of salt equationssince qr must stay small for e�ciency.)Cryptanalysis when v = nHere we assume that v = n.Let Gi and Gj be random linear sums of the n + r equations (P). The probability that Gi and Gjare linear sums of only the n equations (A) is (1=qr)2 (because it is 1=qr for Gi and 1=qr for Gj). Ifthis occurs, then from Gi and Gj , we will attack the scheme exactly as described in [10]. Therefore, ifv = n, the scheme can be attacked with a complexity approximately q2r (and for the legitimate user,computing a signature has a complexity approximately O(qr)). As a result, we do not recommend touse this variation when v = n.The case v > nFor well chosen parameters, we have seen that we do not know how to attack Unbalanced Oil andVinegar schemes. Therefore, of course, we do not know either how to attack the schemes when thetwo ideas { v > n and mixing the equations with truly random equations { are combined together.However, the idea of choosing v > n seems at the present to be a stronger idea (both for security andfor practical implementations) than the idea of mixing Oil and Vinegar with truly random equations.12



12 Another scheme: HFEVThe Unbalanced Oil and Vinegar schemes and the HFE schemes of [14] can very easily be combined,as we will see in this section. Moreover, the combined scheme looks very e�cient since (at the present)we are able to avoid all the known attacks with more e�cient choices of the parameters. So thisHFEV schemes look both more e�cient (because a smaller degree d looks su�cient for security) andmore secure compared to the original HFE scheme. HFEV is also more e�cient (but more complex)compared to UOV, because very few vinegar variables are needed.The scheme (HFEV)In the \most simple" HFE scheme (we use the notations of [14]), we have b = f(a), where:f(a) =Xi;j �ijaq�ij+q'ij +Xi �iaq�i + �0; (1)where �ij , �i and �0 are elements of the �eld Fqn .Let v be an integer (v will be the number of extra xi variables, or the number of \vinegar" variablesthat we will add in the scheme).Let a0 = (a01; :::; a0v) be a v-uple of variables of K. Let now each �i of (1) be an element of Fqn such thateach of the n components of �i in a basis is a secret random linear function of the vinegar variables a01,..., a0v.And in (1), let now �0 be an element of Fqn such that each one of the n components of �0 in a basis isa secret random quadratic function of the variables a01, ..., a0v.Then, the n+ v variables a1, ..., an, a01, ..., a0v will be mixed in the secret a�ne bijection s in order toobtain the variables x1, ..., xn+v .And, as before, t(b1; :::; bn) = (y1; :::; yn), where t is a secret a�ne bijection.Then the public key is given as the n equations yi = Pi(x1; :::; xn+v).To compute a signature, the vinegar values a01, ..., a0v will simply be chosen at random. Then, the values�0 and �i will be computed. Then, the monovariate equations (1) will be solved (in a) in Fqn .SimulationsNicolas Courtois did some simulations on HFEV and, in all his simulations, when the number of vinegarvariables is � 3, there is no a�ne multiple equations of small degree (which is very nice).Example: Let K = F2. In HFEV, we can, for example, choose the hidden polynomial to be:f(a) = a17 + �16a16 + a12 + a10 + a9 + �8a8 + a6 + a5 + �4a4 + a3 + �2a2 + �1a+ �0;where:� a = (a1; :::; an), where a1, ..., an are the \oil" variables.� �1, �2, �4, �8 and �16 are given by n secret linear functions on the v vinegar variables.� �0 is given by n secret quadratic functions on the v vinegar variables.In this example, we compute a signature as follows: the vinegar variables are chosen at random andthe resulting equation of degree 17 is solved in a.Note: Unlike UOV, in HFEV we have terms in oil�oil (such as a17, a12, a10, etc), oil�vinegar (suchas �16a16, �8a8, etc) and vinegar�vinegar (in �0).13



13 Summary of the results for UOVThe underlying �eld is K = Fq with q = pm. Its characteristic is p.\As di�cult as random" means that the problem of breaking the scheme is expected to be as di�cultas the problem of solving a system of equations in v variables when the coe�cients are randomly chosen(i.e. with no trapdoor).Degree Broken Not Broken Not broken and as Broken (despite asdi�cult as random di�cult as random)2 (for all p) v � n or v ' n 2n � v � n22 n22 � v � n2 v � n23 (for p = 2) v � (1 +p3)n (1 +p3)n � v � n36 n36 � v � n32 v � n363 (for p 6= 2) v � n or v ' n 2n � v � n36 n36 � v � n4 v � n4In this table, we have summarized our current results on the attacks on Unbalanced Oil and Vinegarschemes. The original paper ([10]) was only studying the case v = n for quadratic equations.14 Concrete examples of parameters for UOVIn all the examples below, we do not know how to break the scheme. We have arbitrary chosen v = 2n(or v = 3n) in all these examples (since v � n and v � n2 are insecure).Example 1: K = F2, n = 128, v = 256 (or v = 384). The signature scheme is the one of section2. The length of the public key is approximately n � ( (n+v)22 ) bits. This gives here a huge value:approximately 1.1 Mbytes (or 2 Mbytes) ! The length of the secret key (the s matrix) is approximately(n + v)2 bits, i.e. approximately 18 Kbytes. However, this secret key can always be generated from asmall secret seed of, say, 64 bits.Example 2: K = F2, n = 64, v = 128 (or v = 192). The signature scheme is the one section 8. Thelength of the public key is 144 Kbytes (or 256 Kbytes).Example 3: K = F16, n = 16, v = 32 (or v = 48). s is a secret a�ne bijection of F16. The signaturescheme is the one section 8. The length of the public key is 9 Kbytes (or 16 Kbytes).Example 4: K = F16, n = 16, v = 32 (or v = 48). s is a secret a�ne bijection of F16 such that allits coe�cients lie in F2. Moreover, the secret quadratic coe�cients are also chosen in F2, so that thepublic functions Pi, 1 � i � n, are n quadratic equations in (n+ v) unknowns of F16, with coe�cientsin F2. In this case (the signature scheme is still the one of section 8), the length of the public key is2.2 Kbytes (or 4 Kbytes).Note: In all these examples, n � 16 in order to avoid Gr�obner bases algorithms to �nd a solution x(cf [6]), and qn � 264 in order to avoid exhaustive search on x.15 Concrete example of parameters for HFEVAt the present, it seems possible to choose a small value for v (for example v = 3) and a small valuefor d (for example d = 17 if K = F2).16 State of the art (in May 1999) on Public-Key schemes with Mul-tivariate Polynomials over a small �nite �eldRecently, many new ideas have been introduced to improve the schemes, such as UOV or HFEVdescribed in this paper. Another idea is to �x some variables to hide some algebraic properties (seebelow). However, many new ideas have also been introduced to design better attacks on previous14



schemes, such as the { not yet published { papers [1], [2], [3], [5]. So the �eld is fast moving and it canlook a bit confusing at �rst. Moreover, some authors use the word \cryptanalysis" for \breaking" andsome authors use this word with the meaning \an analysis about the security" that does not necessarymean \breaking". In this section, we describe what we know at the present about the main schemes.In the large families of the schemes with a public key based on multivariate polynomials over a small�nite �eld, we can distinguish between 5 main families characterized by the way the trapdoor is intro-duced or on the di�cult problem on which the security relies.In the �rst family are the schemes \with a Hidden Monomial", i.e. the key idea is to compute anexponentiation x 7! xd in a �nite �eld for secret key computation and to \hide" such a function inthe public key. In the second family are the schemes where a polynomial function (with more thanone monomial) is hidden. In the third family, the security relies on an isomorphism problem. Inthe fourth family, the security relies on the di�culty of �nding the decomposition of two multivariatequadratic polynomials from all or part of their composition. Finally, in the �fth family, the secret keycomputations are based on Gaussian computations.The main schemes in these families are described in the �gure below. The most interesting schemes ineach family are in a rectangle.Family 1: C� (1985-1995)Schemes with aHidden Monomial(ex: Dragons withone monomial)C��� Family 2: HFE, Dragons (with a polynomial), HMHM�HFE�, HFE+,HFEF HFEV, HFEV�Family 3: IP Family 4: (Original) Oil and Vinegar (1997-1998)Unbalanced Oil and Vinegar (UOV)Family 5: 2 Round schemes (2R) (D��, 2R with S-boxes)2R�
���� @@@@

� C� was the �rst scheme of all, and it can be seen as the ancestor of all these schemes. It wasdesigned in [12] and broken in [13].� Schemes with a Hidden Monomial (such as some Dragon schemes) were studied in [15], where itis shown that most of the simplest variations of C� are insecure. However, C��� (studied in [20])is (at the present) the most e�cient signature scheme (in time and RAM) in a smartcard. Thescheme is not broken (but it may seem too simple or too close to C� to have a large con�dencein its security ...).� HFE was designed in [14]. The most recent results about its security are in [1] and [2]. In thesepapers, very clever attacks are described. However, at the present, it seems that the scheme is notbroken since for well chosen and still reasonable parameters the computations required to breakit are still too large (moreover, asymptotically, the cryptanalysis is not polynomial if d increasesas d = O(n) for example). For example, the �rst challenge of US $500 given in the extendedversion of [14] has not been claimed yet (it is a pure HFE with n = 80 and d = 96 over F2).� HFE� is just an HFE where k of the originally public equations are not publish. Due to [1] and[2], it may be recommended to do this (despite the fact that original HFE may be secure without15



it). In the extended version of [14] a second challenge of US $500 is described on a HFE�. In anencryption scheme, k must be small, but in a signature scheme, k may be large.� HFEV is described in this paper. HFEV and HFEV� look very hard to break. Moreover, HFEVis more e�cient than the original HFE and it can give public key signatures of only 80 bits ! In asignature scheme, the number v of \vinegar variables" can be large, but in an encryption scheme,v must be small.� HFE+ is just an HFE scheme where the n originally public equations have been linearly mixedwith k truly random equations. In a signature scheme, k must be small, but in an encryptionscheme, k may be large.� HFEF is just an HFE scheme where k of the variables xi have been �xed. In a signature scheme,k must be small, but in an encryption scheme, k may be large.� HFEVF+� is just an HFE scheme where all these \perturbations" (V, F, +, �) have been appliedon the public key.� HM and HM� were designed in [20]. Very few analysis have been done in these schemes (butmaybe we can recommend to use HM� instead of HM ?).� IP was designed in [14]. IP schemes have the best proofs of security so far (see [19]). IP is verysimple and can be seen as a nice generalization of Graph Isomorphism.� Oil and Vinegar was presented in [16] and broken in [10].� UOV is described in this paper. With IP, they are certainly the most simple schemes.� 2R was designed in [17] and [18]. Due to [3], it is necessary to have at least 128 bits in input in the\2R with S-boxes" scheme, and due to [5], it may be wise to not publish all the (originally) publicequations in all the 2R schemes: this gives the 2R� algorithms (the e�ciency of the decompositionalgorithms given in [5] on the 2R schemes is not yet completely clear).Remark 1: When a new scheme is found in these families, we do not necessary have to explain howthe trapdoor has been introduced. Then we have a \Secret-Public Key scheme" ! The scheme is clearlya Public Key scheme since anybody can verify a signature from the public key (or can encrypt fromthe public key) and the scheme is secret since the way to compute the secret key computations (i.e.the way the trapdoor has been introduced) has not been revealed. For example, we could have donethis for HFEV (instead of publishing it).Remark 2: These schemes are of theoretical interest but (at the exception of IP) their security isnot directly relied to a clearly de�ned and considered to be di�cult problem. So is it reasonable toimplement them in real products ? We think indeed that it is a bit risky to rely all the security ofsensitive applications on such scheme. However, at the present, most of the smartcard applicationsuse secret key algorithms because RSA smartcards are more expensive. So it can be reasonable toput in a low-cost smartcard one of the previous public key schemes in addition to (not instead of) thepresnet secret key schemes (such as Triple-DES). Then the security can only be increased, the price ofthe smartcard would still be low (no coprocessor needed). The security would then rely on a mastersecret key for the secret key algorithm (with the risk of depending on a master secret key) and on anew low-cost public-key scheme (with the risk that the scheme has no proof of security).17 ConclusionIn this paper, we have presented two new public key schemes: UOV and HFEV. The study of suchschemes has led us to analyze very general properties about the solutions of systems of general quadraticforms. Moreover, from the general view presented in section 15, we see that these two schemes are atthe present among the most interesting schemes in two of the �ve main families of schemes based onmultivariate polynomials over a small �nite �eld. Will this still be true in a few years ?16
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